Category Archives: Altocumulus clouds

Some recent clouds

May 24th:

DSC_3906 DSC_3912 DSC_3907 DSC_3900

May 25th, yesterday, starting with sunrise color

DSC_3921 DSC_3917DSC_3922

Later yesterday morning, some interesting “Altocumulocirrus”, a rare breed indeed, mocking/mimicking Altocumulus.

Maybe Cirrus floccus would come closest to the true name, but to every eye but that of a genuine cloud maven person, it would be deemed just “Altocumulus”.  Check these out to see how good you were–and NO correcting your cloud diaries!!!!

DSC_3926
5:47 AM. Two layers are visible, a distant Altocumulus castellanus one, and the higher, much higher, cirriform clouds resembling Altocumulus. If you don’t believe me, the sounding from the U of AZ is below.
The TUS balloon sounding for 5 AM AST yesterday. The Altocumulus patches were up around 16,000 feet, and the cirriform clouds around 33,000 feet and at about -50°C
The TUS balloon sounding for 5 AM AST yesterday. The Altocumulus patches were up around 16,000 feet, and the cirriform clouds around 33,000 feet and at about -50°C (-58°F).  Had to cuss that bit because I sensed some doubt out there.
6:38 AM. Same cloud layer. Seriously, how can you not call this "Altocumulus", it mimicks it so well. But these globules are all ice, no liquid water of course anywhere near -50°C unless we believe the reports of Simpson (1963) who purported liquid at -62°C. Nobody believed him though; me ,neither.
6:38 AM. Same cloud layer. Seriously, how can you not call this “Altocumulus”, it mimicks it so well. But these globules are all ice, no liquid water of course anywhere near -50°C unless we believe the reports of Simpson (1963) who purported liquid at -62°C. Nobody believed him though; me ,neither.
7:37 AM. Another view of this cirriform layer making a mockery out of Altocumlus. Note that there is that tiny bit of shading, too, in these cloudlets.
7:37 AM. Another view of this cirriform layer making a mockery out of Altocumlus. Note that there is that tiny bit of shading, too, in these cloudlets.
5:24 PM. The convection leading to cellular structure was still evident pretty much the whole day. Again, we have a problem. Shading like this is not officially permitted with in cirriform clouds except in the "spissatus" species. One would be thinking "Altostratus" here since that cloud is widespread and can have gray shading. When you look at the TUS sounding nearest this time, you find that the moisture is still contained in the upper reaches of the troposphere, where it was in the morning, and that would be in the "etage" for high clouds, 33,000 feet or so above sea level.
5:24 PM. The convection leading to cellular structure was still evident pretty much the whole day. Again, we have a problem. Shading like this is not officially permitted with in cirriform clouds except in the “spissatus” species. One would be thinking “Altostratus” here since that cloud is widespread and can have gray shading. When you look at the TUS sounding nearest this time, you find that the moisture is still contained in the upper reaches of the troposphere, where it was in the morning, and that would be in the “etage” for high clouds, 30,000 feet or so above sea level.
The TUS balloon sounding for 5 PM AST, May 25th. The temperature of that icy layer ranged from about -35°C on the bottom to -60° C at top.
The TUS balloon sounding for 5 PM AST, May 25th. The temperature of that icy layer ranged from about -35°C on the bottom to -60° C at top, so there would not be any liquid water in it even though is might appear in some places.  Where’s my Lear jet?  Need to check these things out and in a hurry!

Now for some prettiness from yesterday evening:

DSC_3949 DSC_3945DSC_3959 DSC_3956

The End

Sunset was pretty good; raindrops tomorrow morning? In nine days as well?

Haven’t had much to say, brain pretty empty again after the big review of the NAS 2003 review which really needed reviewing and commenting on real bad….

(More “late homework” in the offing.)

———————-

Nice sunset last night; we have had a series of pretty nice ones over the past few days.

April 26th. Sunset over the Charoulou Gap.
April 26th. Sunrise over the Charouleau Gap.
DSC_3471
Orangy mountains highlighted by a gap in the Altostratus layer that allowed the setting sun to shine through.
DSC_3474
7:04 PM. There was some turreting in this line of Altostratus that passed over, and because of those deeper tops, indicating stronger, if still slight updrafts, larger snow particles developed and produced this line of heavier virga underneath it.
DSC_3479
7:10 PM.
DSC_3462
A contrail that’s more than about ten minutes old, now, after the new Int. Cloud Atlas has been released, termed, Cirrus anthrogenitus, maybe castellanus in this case, too.

From IPS MeteoStar, this interesting map for tomorrow morning.

The orangy colors denote the strongest winds in “Jetty Jetstream”, and as you know, the colder, low clouds, ones capable of reaching the temperatures where ice forms, are contained within that ring of strongest winds at this level (500 mb).  So, while the models I have looked at so far have no rain here, I think there’s a pretty good chance of a rogue shower tomorrow morning anyway.  At least there should be some nice Stratocumulus/Cumulus tomorrow and some will have ice in them.   As you know, it’ll be awful windy today, too, maybe 40 mph or so in brief gusts here in The Heights of Sutherland.

Also will be looking for some nice lenticulars since “Jetty” will be right over us, but a little toward the warm side where lenticulars mostly occur.

Map valid for tomorrow morning at 5 AM AST.
Map valid for tomorrow morning at 5 AM AST.

In the meantime, spaghetti suggests a big trough in our area again about nine days from now.  The later ACTUAL model outputs don’t show much of anything.  What’s up with that?  I’m hanging with spaghetti that later model runs will indicate a strong trough, and at LEAST another pulse of cooler air, and another minor chance of rain as we are going to see today and especially tomorrow as when become within the “ring of winds” aloft.  Didn’t Johnny Cash sing something about that? Maybe it was Wall of Voodoo

Below, some spaghetti for you showing a big trough over Arizona and the Great Basin which is not much reflected in the actual models, as noted.  But, just watch my friend, how those model outputs will change to reflect a bigger trough about this time!

Valid at 5 PM May 7th.
Valid at 5 PM May 7th.

 

The End

 

Looking ahead to May, and something about the new Int. Cloud Atlas

April’s been kind of a weather dud here in Catalina so far (no rain so far, and the chance on the 20th, mentioned here some weeks ago, has receded to Utah and points north), so lets take a look at how May is shaping up, only two weeks ahead:

 Valid at 5 PM, May 2nd. Nice!
Valid at 5 PM, May 2nd. Nice!

I thought you’d be pretty happy when you saw this, as I was.

 

BTW, there is a new International Cloud Atlas out there.

Its possible there is a photo from Catalina, Arizona!  I have not checked yet.  Its just been published by the World Meteorological Organization of the United Nations.  Still needs a little work, but overall is VERY, very nice.  Came out out on March 23rd, so we’re a little behind here as usual.  The thing that makes it different from prior and sometimes flawed atlases is that each photo is accompanied by some weather data and in many cases maps, radar or satellite imagery at the time of the photo.

Some new expressions to toss around to your fellow cloud-centric folk are things like “Cirrus anthrogenitus”–Cirrus evolved from contrails and “Cumulus flammogenitus”, a Cumulus formed at the top of a fire, something we used to call, “pyrocumulus”, an unofficial term that somehow seems preferable to “flammo”.

However, something that has drawn great attention over the past 20 years or so was not given a name, aircraft-produced ice in Altocumulus and Cirrocumulus clouds, which have been referred to by Heymsfield and colleagues as “hole punch clouds.”1

Hole punch clouds pdf

Ice canals amid Altocumulus are also fairly common.  Ironically, a hole punch cloud with ice in the center, and an ice canal in an Altocumulus cloud layer can be readily seen on the new International Cloud Atlas submission site, now closed.  They’ve mistakenly, IMO, referred to “ice canal” photos as “distrails” without mentioning the ice canal “cirrus” down the middle.  Formerly, distrails were clearings produced by aircraft in thin clouds without any change of phase in the cloud induced by the aircraft, unlike those holes and clearings produced when the ice-phase is triggered by an aircraft passage.

Certainly a “hole punch” cloud is not a distrail, a linear feature, and should have a separate nomenclature.

In keeping with the new terminology regarding “anthro” effects, maybe it should be, since we’re talking about the Cirrus induced by an aircraft, albeit at much lower levels than true Cirrus clouds:

“CIrrus Altocumuloanthroglaciogenitus.”  (??)

Here’s a classic one of those that erupted over Catalina, posted here last January:

11:27 AM, January 2nd. The ice canal in the middle of an Altocumulus layer that might in the future be termed a Cirrus altocumuloanthroglaciogenitus.
11:27 AM, January 2nd. The ice canal in the middle of an Altocumulus layer that might in the future be termed a Cirrus altocumuloanthroglaciogenitus.

 

DSC_3336
5:53 PM. An example of the various cirriform clouds we’ve been treated to the past week or two, ones that have been giving us those nice sunrises and sunsets. Doesn’t seem like there’s been a cloud below 50,000 feet for about that long, too. (I’m exaggerating just a little.)
7:04 PM. Seems like sunsets are occurring later and later.
7:04 PM. Seems like sunsets are occurring later and later.  Here the setting sun allows some of the “topography” of Cirrus clouds to be accentuated.

 

The End

——————————————-
1It should be pointed out immediately if not sooner  that Catalina’s Cloud Maven Person had plenty of time to rectify, or suggest changes to the Atlas as he could have been part of this process, but didn’t really do anything except submit some images for consideration.

High cold ones, and lots of patterns in a complex sky

In particular, those Altocumulus clouds, “cold” Cirrocumulus (ones that transform to ice immediately),  and those “Altocumulocirrus” clouds combining  with  scenes of “regular” cirriform clouds.  Lots of interesting sights to have seen yesterday.  All these the result of marginal moisture aloft and strong winds, up around 100 mph at the highest Cirrus levels.

Let us begin as cloud maven folk by examining the late afternoon sounding launched from our Wildcat balloon launching machine at the University of Arizona, courtesy of IPS Meteostar:

The temperature and humidity profile obtained from a weather balloon launched at about 3:30 PM yesterday afternoon from the U of AZCats.
The temperature and humidity profile obtained from a weather balloon launched at about 3:30 PM yesterday afternoon from the U of AZCats with some suggested cloud levels.  The Altcoumulus level is in doubt. the others are pretty straight forward.  Notice how high those little Cu were yesterday afternoon, about 16,000 feet above sea level, or about  13,000 feet above Catalina, with bases at a cold -13°C or so.  No ice came out of those, though.  Likely droplets too small, or short-lived.
DSC_3122
6:45 PM. A very narrow line of Altocumulus castellanus and floccus virgae approaches Catalina.
DSC_3123
6:46 PM. Let us exercise our curiosity and examine this element in more detail below.
6:47 PM. Altocumulus floccus virgae. Another example of how the top of a storm, as here, can be composed of droplet cloud while the ice that forms in it falls out below. Here, the extreme dryness underneath the Altocu prevents long trails. The ice crystals wither so that they have almost no fallspeed soon after they have fallen out, leaving a flat bottom of tiny ice crystals.
6:47 PM. Altocumulus floccus virgae. Another example of how the top of a storm, as here, can be composed of droplet cloud while the ice that forms in it falls out below. Here, the extreme dryness underneath the Altocu prevents long trails. The ice crystals wither so that they have almost no fallspeed soon after they have fallen out, leaving a flat bottom of tiny ice crystals.  When you see tiny cloudlets like this spewing ice, you KNOW that the temperature has to be extremely low, and colder than -30° C (-22°C) would be a good starting guess.  Actually, guessing “-31.3° ” would be more impressive to your friends or neighbors….   It was a pretty scene, that’s for sure.
5:37 PM. Pretty iridescence occasionally erupted in newly formed Cirrocumulus, newly, as within seconds or in the last minute when the cloud droplets are extremely tiny, less than 10 microns in diameter. You don't see iridescence in clouds with droplets much larger than that.
5:37 PM. Pretty iridescence occasionally erupted in newly formed Cirrocumulus, newly, as within seconds or in the last minute when the cloud droplets are extremely tiny, less than 10 microns in diameter. You don’t see iridescence in clouds with droplets much larger than that.  And, it has to be pretty much overhead to get the best views.  Hope you saw those yesterday.
5:41 PM.
5:41 PM.
5:43 PM. ??????? These are little cloudlets of ice up at Cirrus levels, but it looks exaclty like a field of normal Altocumulus to the ordinary eye. "Altocumulocirrus"?
5:43 PM. ??????? These are little cloudlets of ice up at Cirrus levels, but it looks exaclty like a field of normal Altocumulus to the ordinary eye. “Altocumulocirrus”?  Without doubt this “ice” composition would be contested by other observers.  However, cloud-maven person’s interpretation should be used.  Now it is likely that the ice in these clouds first formed on what we deem as “cloud condensation nuclei”, and it might be likely that water saturation was reached.  But, if there was an instant of liquid, is certainly transitioned to ice in seconds since the temperatures at Cirrus levels were well below -40° C.   I don’t believe this was at the same level as the Altocu shown in the beginning of this writeup, yet it wasn’t as high as the highest Cirrus yesterday (up around the -50° C level).
6:07 PM. An example of how complicated the cloud scene was yesterday. The whitish clouds in rolls were icy cirriform clouds, and the delicated clouds were HIGHER Cirrocumulus and Cirrus. Cirrocumulus yesterday was indeed where most cloud schematics put it, at Cirrus levels, though probably half the time its in the mid-levels were Altocumulus clouds reside. So, with Altocumulus-like clouds at Cirrus levels and Cirrocu on top of Cirrus, it was really a crazy cloud day yesterday.
6:07 PM. An example of how complicated the cloud scene was yesterday. The whitish clouds in rolls were icy cirriform clouds, and the delicated clouds were HIGHER Cirrocumulus and Cirrus. Cirrocumulus yesterday was indeed where most cloud schematics put it, at Cirrus levels, though probably half the time its in the mid-levels were Altocumulus clouds reside. So, with Altocumulus-like clouds at Cirrus levels and Cirrocu on top of Cirrus, it was really a crazy cloud day yesterday.  At the very top of this photo were Altocu that were immediately ice clouds that might have comprised a separate third level of clouds.  Need a Lear jet to get there fast to resolve these many guesses.
5:07 PM. Jumping around in time.... These were some of the best scenes yesterday IMO, those oh-so-delicate patterns in those cold Cirrocumulus clouds, ones that transitioned to Cirrus clouds downwind.
5:07 PM. Jumping around in time here…. These were some of the best scenes yesterday IMO, those oh-so-delicate patterns in those cold Cirrocumulus clouds, ones that transitioned to Cirrus clouds downwind.
5:08 PM.
5:08 PM. Same patch Cirrocu.  Note Cirrus forming in the lower portion of this photo, once Cirrocu.  BTW, all power lines should be placed under ground.
2:29 PM. Amid some real Cumulus fractus was some Cirrus "cumulus mimicry" I've termed "Cumulo-cirrus". Can you spot the fakes at Cirrus levels? Its pretty hard.
2:29 PM. Amid some real Cumulus fractus was some Cirrus “cumulus mimicry” I’ve termed “Cumulo-cirrus”. Can you spot the fakes at Cirrus levels? Its pretty hard.
2:29 PM. OK, I give up. Here's a zoomed shot of Cumulus fractus mimicry by clouds at Cirrus levels. Might have been some droplets, too, before converting to ice.
2:29 PM. OK, I give up. Here’s a zoomed shot of Cumulus fractus mimicry by clouds at Cirrus levels. Might have been some droplets, too, before converting to ice.  These kinds of clouds suggest significant turbulence at this level, as would be in a regular Cumulus fractus cloud.

The weather way ahead

Still looking for that chance of rain before July….  haha

Troughy conditions will actually recur aloft over us over the next few weeks it seems, which means slight chances of rain, but periodic cold fronts passing by, mostly dry ones.  Best chance for rain still seems to be around the 20th, plus or minus a day or two, even though mod outputs have backed off that scene.  But, we have our spaghetti that tells us the models will likely bring back that threat around the 20th, even if some individual runs show nothing at all or only close calls.  We shall see if this interpretation has any credibility at all, won’t we?

Of note, Cal having big April in rain and snow after the gigantic January and February accumulations!  Looks like they’ll continue to get slugged by unusually strong storms, off and on, for another couple of weeks.  Water year totals are going to be truly gigantic.

The End

Catalina/Sutherland Heights gets its own hourly predicted weather from the U of AZ

On this station plot map for the Tucson area, generated by the University of Arizona’s Hydro and Atmospheric Sciences Department, now has a point for little Catalina/Sutherland Heights!   Check it out.  Sample map below.  Now you can see how our predicted weather varies with those points around us over the next few days.  How great is that?Ann Catalina:Sutherland Heights stationSome rain from our incoming cold front is just about here as a line of showers approaches from the west.  Hoping now for a tenth of an inch is all.

Yesterday’s clouds

Had some nice scenes late of little Altocumulus castellanus shedding light snow showers or “virga.”

DSC_2775
6:01 PM.
DSC_2771
6:01 PM. Looking at this line farther downwind, you can see, maybe, that its converting to ice on the far right. So, these Altocu must be awfully cold, at least -25° C I would guess. Estimated bases are at about 18,000 feet above the ground.
DSC_2773
Also at 6:01 PM. Here you can see that those little tufts of water have completely converted to ice down stream (lower right). For this to happen at Altocumulus level takes very low temperatures. Now I will look at the NWS balloon sounding and see if I have come close at all to this height and temperature. Its gotta be way up there.
Ann 2017032300Z_SKEWT_KTUS
The TUS sounding launched from the U of AZ yesterday around 3:30 PM. I had not seen this until just now! But you can see that the height and temperature estimates were pretty close. Height above Catalina was about 18,000 feet, 21,000 above sea level.
DSC_2788
6:51 PM. The clearing before the storm. Those higher clouds departed, and the lower moisture and clouds that will comprise our chance of rain, began to appear on the NW horizon. Can you see that those tops have ice in them?

 

The weather ahead and way ahead

March. a lamb upon entry,  will roar on the way out.  While only a little rain will likely fall today, several more troughs are in the works, during the next ten days and they are looking much more potent than today’s trough and front passage, probably bringing cold enough air that some people will start complaining about how cold it is; probably me.  Looks, too, like abnormally cool weather will cruise right in to the first week or two of April.  Bye-bye heat!

The End

“Peru’s Niño”

I thought you’d like to read this (Peru’s Niño), forwarded to me by Niño expert, Nate M.   Pretty incredible to read about what is happening down there in the wake of the Big Niño of 2015-16,  which really turned out to be more of a couch potato in terms of weather production in the Great SW.

But, all this winter,  along the Equator near the coast of South America, there has been something we used to call an “El Niño”,  but is downplayed or ignored these days because of a new definition that seemed to explain more weather when it occurred, “Region 3.4” a large zone along the Equator WAY out in the Pacific rather than something near the South American coast (that zone now called, “Regions 1 and 2”),  as nicely illustrated by NOAA here.

But what has been the effect of what we might call the “Classic Niño”, a warm strip of water along the South American coast, one that doesn’t extend too far into the Pacific?  “Read all about it”, as they used to say.   Its pretty remarkable.

And here’s what the SST field looks like.  Its boiling down there off South America!  (Speaking figuratively, of course):

Sea surface temperature anomalies as of yesterday from the Navy!
Sea surface temperature anomalies as of yesterday from the Navy!  Wow.  That hot water is fueling giang Cumulonimbus clouds, ones that spew out huge anvils that can affect the weather in the mid-latitudes, disrupt the normal winter patterns of where highs and lows like to go.  Could such a warm anomaly, limited to the near coastal region of South America, have created this astounding winter in the West?

Peru’s Niño can be thought of as a “classic Niño”, the ones written about in the decades before about 1990 or so when the definition of what constituted a  NIño (or Niña) was expanded and delineated more sharply among several definitions that were floating around. We ended up focusing on a region WAY out in the Pacific Ocean called, “Region 3.4” that SEEMED to explain more over the prior years.

What’s so interesting about this is that the “Classic Niño” has been underway pretty much all this winter, and we’ve had, especially in California, a classic Niño response; that is,  abnormally heavy precip farther down the West Coast that no one anticipated.

Hmmmmm.

Well, the correlations with Cal precip and “classic Niño” occurrences will take a huge jump upward after THIS winter!

End of Statement (hand-waving)  on Niñoes.

——————————–

Local weather statement:  for immediate release

Cooler, fluctuating weather foretold here for that latter part of March, I don’t know how many weeks ago, is on the doorstep after the long, anomalously hot dry spell.  Poor wildflowers have been suffering, too, fading, looking a little stunted after a great beginning, one rivaling the great displays of 2010.

All of the local weatherfolk are on top of this now, and so no point recasting that stuff.  HECK, you can go to Weather Underground1
and get as “good as can be” forecast for Catalina (Sutherland Heights) out to ten days!  And, there’s nothing worse for a weather forecaster with forecasting in his blood, than to be excited about an “incoming” and when you mention it to a neighbor he replies, “Yeah, I heard about that already.  Supposed to get a quarter of an inch.”  There is no air whatsoever in the “balloon” after that.  So, if you have a weather-centric friend who says something about the upcoming weather, pretend that you haven’t heard about it yet, “DON’T say something as hurtful, as “Yeah, I heard about that already.”

So, here, we go the long route because most weatherfolk are afraid to go too far into the future because its often WRONG.  Our models tend to lie a lot after about even a week, so only the brave go out even ten days!

However, here, we go out as much as two weeks and more because its not a truly professional site but rather want to get something out there earlier than other people, sometimes called a “scoop” in the news and weather business.  That’s why our motto here is, “Right or wrong, you heard it here first!”  Furthermore, if a longer range forecast posted here is WRONG, you won’t hear about it anymore!

Cloud maven person will say this about the first incoming of several fronts:  comes in early Thursday morning, its strong!    Rainfall potential:  10% chance of less than 0.12 inches, 10% chance of more than 0.75 inches.  Best of those is the average, or about 0.4350 inches in this one.  It has great POTENTIAL to be a soaker, but mods have been all over the place; hence, the large range of potential amounts.  At least some measurable rain seems to be in the bag, a paper one please, because plastic is insidious.  Note, CMP’s forecast is more generous than that found in WU’s latest forecast for Catalinaland.

The weather WAY ahead, unprofessionally so

Let us look beyond the professional forecasting limits to April:

We know we got several storms/fronts zipping across AZ as March goes out like a lion, but what about April?

Looks like that pattern will continue into April with temperatures below normal for the first part.  The end of the unprofessional forecasting portion of this blog, though we do have our NOAA spaghetti to hang our umbrella on….  Check it out for about two weeks ahead.

Some clouds recent clouds, including a couple from yesterday

DSC_2744
2:33 PM.  Yesterday afternoon saw a few globs of lenticular forming on top of mini_Cumulus clouds, ones that made you think the summer rain season could be at hand, given the 90+ heat of yesterday around these parts.
12:52 PM.
12:52 PM.  A high  (above 30 kft above the ground) and cold (less than -40°C patch of Cirrocumulus cloud that is going to transition to CIrrus over the next 10-20 minutes.
DSC_2737
1:12 PM:  Later that same patch as those cloudlets spread out and merge into just an ordinary Cirrus after being that delicate-looking patch of Cirrocumulus. Most Cirrocumulus clouds are not this cold, but rather evaporate or fatten into larger elements of “Altocumulus” clouds, rather than transition to Cirrus.
DSC_2728
Had a nice sunset a couple days ago (15th), some liquid Altocumulus cloud slivers with higher Cirrus.

The End

———————–
1Although “Weather Underground” might sound like an org has a radical origin, maybe something left over from the late 1960s, this particular one was NOT formed by 60s “weatherman” terrorists like Bill Ayers and Bernadine Dohrn (the link is for those of you who may have set trash cans on fire, as happened at San Jose State to protest the Vietnam War, to look back at those days in horror or nostalgia; take your pick) , but rather by genuine weather geeks (haha, I count myself among them, those that can’t get enough of weather, there can never be too much, like the guys mentioned in this “Cloud City” article.)

Catalina WY progress report; Cal WY update, too, since I grew up in Cal

I thought you’d like to see this:

As of the end of February 2017. We're pretty average, but it took some "heavy lifting" in December and January to get there.
As of the end of February 2017.  You can see were right about at the average for the Water Year,, but it took some “heavy lifting” in December and January to get there.

Doesn’t look promising for much rain here in Catalina in March, however.  No rain in sight through the next 10 days at least.

Let’s check our 7 inches with what’s happening upwind, say, in CALIFORNIA, and see if there’s been any drought relief there, through February,  via the CNRFC:

California water year totals through the end of February 2017. Note one station in the central Califorina coastal range is already over 100 inches!
California water year totals through the end of February 2017. Note one station in the central Califorina coastal range is already over 100 inches!  There are 20 stations already over 100 inches as can be seen from the table at right.  March looks to have substantial rains north of SFO, which will add appreciably to those highest totals.  Amazing!  You can go to the CNRFC and expand these interactive maps, btw.

As you are likely to know from many media stories last year, Cal was in a drought siege of five straight years,  with but got a little relief last year in the northern part thanks to help from  the giant Niño, one of the strongest ever.

Alas, it was one that failed to deliver as the big rain producer for the south half of Cal and the SW in general as was expected.

In case you’ve forgotten how bad things were in Cal, let us look back at what was being said, those horrific appearing drought maps,  and also how hopeful were were at the time  that the Big Niño would take a bit bite out of drought.  This is a really good article:

https://www.climate.gov/news-features/event-tracker/how-deep-precipitation-hole-california

Then, when the Big Niño faded away like maple syrup on a stack of buckwheat pancakes last spring and summer,  we were surely doomed for more dry years.  And, for a time, the dreaded cold tongue of water in the eastern equatorial region, the so-called, La Niña, started to develop, which would be no help at all for  a good rain season like a Big Niño is, usually.

The Niña faded away, too, to nothing as the winter went on, so we really didn’t have much going on in the tropical Pacific to help us figure out what kind of winter rainfall regime we were going to have om 2016-17.  Not having anything going on meant winter rainfall could go either way, a difficult to figure out situation for season forecasters.

In retrospect it is pretty astounding how big a signal must have been out there SOMEWHERE that this winter was going to be one for the history books on the West Coast in general, and in particular, for Californians.  Californians saw their drought chewed up and spit out in a single winter, including snow packs so high the height of some mountain peaks have been revised.  (I’m kidding.)

No one saw such an astounding winter coming.

This winter sure makes one think of the QBO (Quasi-biennenial Oscillation, one up there in the Stratosphere where there’s almost no air (haha, well, practically none)…  Did the QBO have a role in this astounding winter;  was there a delay in the effects of the Big Niño even without a bunch of convection in the eastern Pac tropics?  Doesn’t seem that could be right…

But, William “Bill” Lau, U of Maryland scientist,  reported some statistical evidence of  such a lag way back in ’88 due to a QBO connection of some kind and ENSO, no physical cause could be discerned, however,  not yet,  anyway.  Lau, 1988, is reprised below for readers who want to go deep:

Annual cycle, QBO, SO on global precip J Geophys Res 1988ocr

Sure has looked like the Big Niño WY we expected last year!

Some recent clouds; after all, this is CLOUD maven, not RAIN maven:

I’ve been kind of holding out on you.  I dropped my camera and busted it.  Its no fun taking pictures when you don’t have a real camera.  Still doesn’t work right, but take these anyway:

March 4th, afternoon. Hope you logged this; the rarely seen CIrrus castellanus (almost "congestus" in size) or, informally, "Cumulo-cirrus."
March 4th, afternoon. Hope you logged this; the rarely seen CIrrus castellanus (almost “congestus” in size) or, informally, “Cumulo-cirrus.”
Poppies are out, btw. Nice display on "Poppy Hils" just across and southwest of the Pima County Pistol Club, off Bowman.
Poppies are out, btw, in case you haven’t noticed. Nice display on “Poppy Hils” just across and southwest of the Pima County Pistol Club, off Bowman.
DSC_2499
March 4th, late afternoon. Nothing terrifically special in this tangle of Cirrus spissatus (“Cis spis” to cloud folk) but I thought it was just a really nice scene

Moving to the next day, Sunday, that REALLY windy day:

March 5, Sunday morning 6:13 AM. Altocumulus lenticularis alerts cloudwise folk to the possibility of windy conditions although it was already windy.
March 5, Sunday morning 6:13 AM. Altocumulus lenticularis alerts cloudwise folk to the possibility of windy conditions although it was already windy.
3:55 PM, March 5th. After a day of solid Altostratus overcast with underlying Cumulus and Stratocumulus, a layer of Altocumulus began to move in to add a little more interest to the sky.
3:55 PM, March 5th. After a day of solid Altostratus overcast with underlying Cumulus and Stratocumulus, a layer of Altocumulus began to move in to add a little more interest to the sky.
3:57 PM. Looking to the north revealed that some of the lower Cumulus/Stratocumulus complexes reached heights where ice could form. That smooth region on the bottom and right side of the cloud is a fall of ice from this cloud with a RW- (text for "light rainshower") if you like to text stuff) right below that. This is not a lot of ice and so you'd be thinking the cloud barely made that ice-forming temperature.
3:57 PM. Looking to the north revealed that some of the lower Cumulus/Stratocumulus complexes reached heights where ice could form. That smooth region on the bottom and right side of the cloud is a fall of ice from this cloud with a RW- (text for “light rainshower”) if you like to text stuff) right below that. This is not a lot of ice and so you’d be thinking the cloud barely made that ice-forming temperature.  CMP doesn’t think it was caused by an ice fallout from that higher layer, which sometimes can happen.  Let’s look at the most timely sounding, just to check.  From the real Cowboys at the University of Wyoming, this:
Ann 2017030600.72274.skewt.parc
The TUS sounding which I only now just saw, showing a vast separation between the lower Stratocumulus and the higher layers of Altocumlus and Altostratus on top. Note, too, that over TUS the tops of the lower cloud is not quite at -10°C the temperature we start to look for ice formation in AZ. However, our clouds were NW of that balloon sounding, and it would have been that tiny bit colder, and tops were also lifted some when they passed over the Tortolitas earlier, meaning that the tops of this complex were colder than -10° C (14° F) at some point.

Wow, too much information….after a hiatus in blogging I feel like that  Oroville Dam in California, metaphorically overflowing with too much hand-waving information.

6:03 PM, March 5. Its still real windy. Line of virga brought a few drops when it passed overhead at 6:30 PM.
6:03 PM, March 5. Its still real windy. Line of virga brought a few drops when it passed overhead at 6:30 PM.
6:04 PM. Nice dramatic shot toward Marana as the backside of the middle cloud layer approached allowing the sun to shine through.
6:04 PM. Nice dramatic shot toward Marana as the backside of the middle cloud layer approached allowing the sun to shine through.
6:09 PM. Virga getting closer. May have to park car outside to make sure I don't miss any drops!
6:09 PM. Virga getting closer. May have to park car outside to make sure I don’t miss any drops!
6:22 PM. SW-NE oriented virga strip about to pass overhead. Drops fell between 6:30 and 6:40 PM, but you had to be outside to notice, which you would have been as a proper CMJ eccentric.
6:22 PM. SW-NE oriented virga strip about to pass overhead. Drops fell between 6:30 and 6:40 PM, but you had to be outside to notice, which you would have been as a proper CMJ eccentric.  You would have WANTED that trace of rain report, maybe slackers would not have observed.
6:30 PM. Climax; the great sunset allowed by that backside clearing.
6:30 PM. Climax; the great sunset allowed by that backside clearing.

The End, at last!

Thunderblasts after midnight awaken sleeping Catalinans with 50 mph winds, graupel, and R++; latest storm total now 1.38 inches!

In case you don’t believe me that over an inch fell, this digital record from Sutherland Heights with writing on it:

20170120-21 rain day
Your last 24 h of rain in the Sutherland Heights, Catalina, Arizona, USA. Total resets at midnight.

Probably a little more to come, too.  Got some blow damage, I’m sure.  Will be looking for roof shingles around the yard today.

12:45 AM. Your radar and IR satellite imagery for our blast last night from IPS MeteoStar
12:45 AM. Your radar and IR satellite imagery for our blast last night from IPS MeteoStar .  That tiny red region near Catalina represents hail and/or extremely heavy rain.

And, as everyone knows from their favorite TEEVEE weatherperson, “New Storm to Pound SE Arizonans!”  Begins Monday night, Tuesday AM.  May have snow in it as it ends.

Your know, its no fun telling people what they already know, so lets look ahead beyond the normal forecast period of great accuracy, beyond not seven days, not eight, but beyond TEN days!

First, we set the stage with a ten day look ahead (from last evening) in a NOAA spaghetti factory plot:

Valid for 5 PM, Monday, January 30th. If you've not seen this, you'll be screaming "warm in the West, and damn Cold in the East." Its a common pattern often associated with some of the driest years in the West when it recurs over and over again during a winter.
Valid for 5 PM, Monday, January 30th. If you’ve not seen this, you’ll be screaming “warm in the West, and damn Cold in the East.” Its a common pattern often associated with some of the driest years in the West when it recurs over and over again during a winter.

This plot indicates that the pattern of a towering, storm-blocking ridge is certain along the West Coast by ten days–will be developing for a day or three before this,  That ridge represents an extrusion of warm air aloft over the entire West Coast extending all the way into Alaska.  The couple of red lines in and south of AZ are due to the change of a minor, likely dry, cutoff low in our area about this time (plus or minus a day).

In other words, this plot suggests a warmer, dry period develops over AZ, and storms are shunted from the Pacific Ocean, located west of the West Coast, all the way to Anchorage and vicinity,  They will  be welcoming a warm up in weather up thataway at some point in this pattern.

Is that it, then, for the AZ winter precip?  It could happen.  Just one more storm after the current one fades away today?

Hint:  Sometimes anticyclone ridges like the one in the plot above get too big for their britches, and fall away, or, break off like a balloon from a tether, and a warm blob of air aloft sits at higher latitudes, often floating off to the northwest.

The exciting ramification of this latter scenario is that in the “soft underbelly” of the “blocking anticyclone” (as in American football), the jet stream throws something of a screen pass, goes underneath the belly of the blocking high,  and races in toward the West Coast at lower latitudes.  Having done so, such a break through pattern (“Break on through to the Other Side”) results in heavy rains in Cal and the Southwest.

Izzat what’s going to happen?

Let us look farther ahead, unprofessionally, really,  and see if there is evidence in spaghetti for such a development and you already know that there must be because it would explain why I am writing so much here.  Below, the EXCITING spaghetti plot strongly indicating break through flow breaking on through to the other side, i.e., the West Coast,  from the lower latitudes of the Pacific:

Valid on Thursday, February 2, at 5 PM AST. Flow from the lower latitudes of the Pac will, in fact, break on through to the other side, as told in song by the Doors1.
Valid on Thursday, February 2, at 5 PM AST. Flow from the lower latitudes of the Pac will, in fact, break on through to the other side, as told in song by the Doors1.  Who knows what they were talking about but here we’re talking about a jet stream….

Well, we’ll see in a coupla weeks if CMP knows what he is talking about..  I think this is going to happen, resembles what’s happening now, and weather patterns like to repeat, more so within the same winter.  However, how much precip comes with this pattern will be determined by how much flow breaks on through to the other side….

Yesterday’s clouds

Let us begin our look at yesterday’s clouds by looking back three days ago before the Big Storm.  We had a nice sunrise.   Here it is in case you missed it:

DSC_1680
7:21 AM. Altostratus sunrise. Virga is highlighted showing the precipitating nature of Altostratus. Amount of virga can vary.
DSC_1686
7:31 AM. Same kind of view, different colors.
DSC_1689
7:40 AM. Highlight on the Tortolitas. This is why you carry your camera at all times.
9:04 AM. Pretty much solid gray after that nice sunrise for the rest of the day with cloud bases lowering and raising. Early on, cloud bases were well above 10,000 feet; i. e;, above Mt. Lemmo, and would be called, "Altostratus opacus." The virga is very muted, and there are embedded droplet clouds as well as a droplet cloud layer (Altocumulus) encroaching on the right. Estimated ceiling here: 12,000 overcast." (Pronounced, "one-two thousand overcast" if you want to make your friends think that maybe you were a pilot at some time in your life.)
9:04 AM. Pretty much solid gray after that nice sunrise for the rest of the day with cloud bases lowering and raising. Early on, cloud bases were well above 10,000 feet; i. e;, above Mt. Lemmo, and would be called, “Altostratus opacus.” The virga is very muted, and there are embedded droplet clouds as well as a droplet cloud layer (Altocumulus) encroaching on the right. Estimated ceiling here: 12,000 overcast.” (Pronounced, “one-two thousand overcast” if you want to make your friends think that maybe you were a pilot at some time in your life.)
12:58 PM.
12:58 PM. Clouds began to appear on Samaniego Ridge as the moist air above us lowered steadily.  However, due to lowering cloud tops, the ice in the higher overcast layer was gone. Here there are two layers above the scruff of Stratus fractus (I would call it) on the ridge.  The lower one looks like its a Stratocumulus, and the higher one a solid layer of “Altocumulus opacus.”  Its already rained some, and we were in between storm bands.
2:48 PM. Looked like the Altocumulus opacus (stratiformis, if you want to be exactly correct) was breaking up just enough for a sun break. But no, kept filling in as it headed this way from the southwest.
2:48 PM. Looked like the Altocumulus opacus (stratiformis, if you want to be exactly correct) was breaking up just enough for a sun break. But no; it kept filling in as it headed this way from the southwest.  No ice, or virga evident, so tops are pretty warm, probably warmer than -10° C (23° F) would be a good guess. Hah!  Just now looked at the TUS sounding and tops were indicated to be at -11° C, still very marginal for ice (absent drizzle drops in clouds, which causes ice to form at much higher temperatures, but you already knew that.)
4:24 PM. Small openings allowed a few highlights to show up on the Catalinas underneath that Altocumulus opacus layer.
4:24 PM. Small openings allowed a few highlights to show up on the Catalinas underneath that Altocumulus opacus layer.  And  clouds were still topping Ms. Mt. Lemmon, indicating a good flow of low level moisture was still in progress.

Moving forward to only two days ago, the day preceding the nighttime blast:  a cold, windy day with low overcast skies all day, shallow, drizzle-producing clouds, something we don’t see a lot of here in Arizona.

8:08 AM, January 20th, 2017, btw. "Gray skies, nothin' but gray skies, from now on", by Irving B.
8:08 AM, January 20th, 2017, btw. “Gray skies, nothin’ but gray skies, from now on”, by Irving B.  Stratus fractus underlies an overcast of Stratocumulus.  Some light rain is falling toward Romero Pass on the right.
8:10 AM. A really special shot. Stratus with drizzle is a very difficult photographic capture. I can feel how enthralled you are with this view toward Oro Valley. You know, I do this for YOU.
8:10 AM. A really special shot. Stratus with drizzle, shown here,  is a very difficult photographic capture. I can feel how enthralled you are with this scene toward Oro Valley. You know, I do this for YOU.  Look how uniform the gray is!  It just takes your breath away!
9:44 AM. Before long, drier air down low moved in, eradicating our beautiful Stratus layer, leaving only holdouts (Stratus fractus) along the Catalina foothills below the heavy layer of Stratocumulus.
9:44 AM. Before long, drier air down low moved in, eradicating our beautiful Stratus layer, leaving only holdouts (Stratus fractus) along the Catalina foothills below the heavy layer of Stratocumulus.
10:20 AM. The wind had now shown up, and these ragged, shredded shallow Stratocumulus shedding drizzle or very light rain showers stormed across the Catalina Mountains. This was quite remarkable sight, since such shallow clouds as these are more often seen in clean maritime locations like Hawaii. Scenes like this suggest that the cloud droplet concentrations were very low, and that there were larger than normal cloud condensation nuclei on which the drops could form, getting a head start in the sizes needed to produce collisions with coalescene (larger than 30 microns in diameter (about one third to one half a human hair in diameter, for perspective.)
10:20 AM. The wind had now shown up, and these ragged, shredded shallow Stratocumulus shedding drizzle or very light rain showers stormed across the Catalina Mountains. This was quite remarkable sight, since such shallow clouds as these are more often seen in clean maritime locations like Hawaii. Scenes like this suggest that the cloud droplet concentrations were very low, and that there were larger than normal cloud condensation nuclei on which the drops could form, getting a head start in the sizes needed to produce collisions with coalescene (larger than 30 microns in diameter (about one third to one half a human hair in diameter, for perspective.)

 

3:12 PM. Lower, drier air moved in, eradicating the Stratocumulus and revealing the rarely seen Nimbostratus precip-producing layer. This layer, considered a mid-level cloud, is usually obscured by, you guessed it, Stratocumulus clouds.
3:12 PM. Lower, drier air moved in, eradicating the Stratocumulus and revealing the rarely seen Nimbostratus precip-producing layer. This layer, considered a mid-level cloud, is usually obscured by, you guessed it, Stratocumulus clouds.

By the end of the day, the clouds had lowered again, and we were about to have a very interesting night!

5:01 PM.
5:01 PM.

The End

———————-
1Remember how great we hippie relics thought that first Doors album was? Later, the Doors, and that era were to be made fun of by 80s punk and humor group,  The Dead Milkman in “Bitchin’ Comaro.” (Its worth a listen.)

 

 

“Deception at its finest”….a study in cloud perspective

I am sure that many of you saw this last evening:

4:17 PM. Line of spreading out Altostratus translucidus.
4:17 PM. Line of spreading out Altostratus translucidus.  Many of you might have added, “radiatus” to that cloud name.  “Clearly” it is widening as it passes over.

While I hate to embarrass cloud acolytes, here’s the simultaneous satellite view, courtesy of our Banner University of Arizona Weather Department:

AZC
4:00 PM AST. That line of ice cloud looks pretty straight doesn’t it? Imagine how wide a cloud would have to spread, after seeing that Altostratus photo, to REALLY be radiating, spreading out!

As Einstein wrote, “Things are not always as they seem.”

Q. E. D.

Now, for the snow report

…from the Lake Tahoe area (after all, we made a BIG DEAL out of the incredible NWS, Reno, forecast in the prior blogulation):

0822 AM     HEAVY SNOW       NORTHSTAR               39.28N 120.12W
01/11/2017  M42.0 INCH       PLACER             CA   PUBLIC

NORTHSTAR AT TAHOE REPORTED 42 INCHES OF NEW SNOWFALL IN  THE LAST 24 HOURS. 48 HOUR TOTAL OF 78 INCHES AND A 7 DAY TOTAL OF 122 INCHES1.

1This note passed along to the Arthur by Mark Albright.

Looks like a bite has been taken out of the Cal drought this water year, a drought it was said would take years to end!  Folsom Lake, near “Sacramenta”, Cal,  has risen 30 feet in the past 30 days! Oh, my.

Now for some more of them cloud pictures…

Been holding out as other chores fill up the day:

7:19 AM, Jan 10. Pretty Altocumulus, some Cirrus above.
7:19 AM, Jan 10. Pretty Altocumulus, some Cirrus above.
7:19 AM, Jan 10th. Time seems to be standing still, as we look a a cloudlet spewing heavy virga.
Also 7:19 AM, Jan 10th. Time seems to be standing still, as we look a a cloudlet spewing heavy virga.
7:22 AM, Jan 10th, time moving ahead again. Close up of that Altocumulus with virga. Top must have been turreted, colder maybe a half hour or hour before this photo to have so much ice compared to its brethren.
7:22 AM, Jan 10th, time moving ahead again. Close up of that Altocumulus cloud with virga. Top must have been turreted, colder maybe a half hour or hour before this photo to have so much ice compared to its brethren.  That’s the learning part of this sequence.  Doesn’t look like an artifact from an aircraft because there is droplet cloud at the top, and not just a clear spot, which usually happens when an aircraft makes ice in a “supercooled” droplet cloud.
5:14 PM, Jan 10th. THought this was a neat scene, Cirrus uncinus, the long trail of ice crystals falling behind, the overhead view.
5:14 PM, Jan 10th. THought this was a neat scene, Cirrus uncinus, the long trail of ice crystals falling behind, the overhead view.
12:57 PM, Jan 8th. Makes you want to cry... This Cirrus spissatus is trying so HARD to be a precipitator to the ground, and doesn't know that those bottom ice crystals are evaporating 25,000 feet above it.
12:57 PM, Jan 8th. Makes you want to cry… This Cirrus spissatus is trying so HARD to be a precipitator all the way to the ground, and doesn’t know that those bottom ice crystals are evaporating 25,000 feet above it.

The weather just ahead

U of AZ latest mod output (from 11 PM AST last night) has a substantial rain on the doorstep.  Starts here in Catalina Saturday afternoon with projected totals over half an inch nu mid-day Sunday.  Check it out:

Totals valid at 11 AM AST, Sunday, Jan. 15th.
Totals valid at 11 AM AST, Sunday, Jan. 15th.

HECK, this storm wasn’t even predicted 10=12 days ago!  The major weather change was indicated about the 20th, plus or minus a day.  Those storms, indicated in the NOAA “spaghetti” plots more than 12 days ago, are still in the pipeline after we have a brief “recovery” from the “surprise” storm about to arrive on Saturday!  Yay.

This sequence of storms is so great for the AZ water situation, too, as well as giving it to Cal good again around the 20th as well.  No doubt, as the humans we are, the peoples of Cal  will be complaining about TOO MUCH WATER!

This will lead to apathy about water issues, you can bet on it!  See the well-known “cloud seeding cartoon” about drought and apathy posted so many decades ago in a journal article on cloud seeding by editorial nemesis1, Bernard A. Silverman, J. Appl. Meteor.,
termed the “Hydro-illogic Cycle”:

Published in 1978, but was around in the cloud seeding culture for many years before that. Used without permission. hahaha
Published in 1978, but was around in the cloud seeding culture for many years before that. Used without permission. hahaha  I believe it was drawn by the founder of Atmospherics, Inc., Tom Henderson’s daughter.  Atmospherics, Incorporated performed numerous cloud seeding operations in the US and around the world beginning in the early 1950s.  Yours truly worked for them on several occasions in the  early 1970s as a “radar meteorologist” directing seeding aircraft.  Later, I became a published critic, mostly with Prof. Peter V. Hobbs,  of a number of cloud seeding projects.

The End
——————————-
1Nothing yours truly submitted during the era of BAS as Editor of the J. Appl. Meteor. “got in”, including the benchmark paper reporting that our own aircraft was creating ice in clouds at temperatures as high as -8° C.   Three sole-authored papers critical of cloud seeding that I submitted were rejected in 1983 alone!  All or parts of them were published years later.

The paper on our aircraft, submitted originally in 1981, was rejected twice before being accepted and published in 1983. The effect was confirmed in experiments conducted in the Mono Lakes area in 1991, by the president of Atmospherics, Inc. mentioned above! Aircraft produced ice particles at unexpectedly high temperatures is a now well-known phenomenon that researchers have to be aware of when re-sampling the same cloud with an aircraft at below freezing temperatures.

Soap box:  It really is the editor of journals that determines whether you’re going to get in or not. They know, or should know, those who are going to keep you out or not, those with axes to grind, and those who are more objective.  However, let me say this, I like Bernie.  Has a great sense of humor. Below, Bernard A. Silverman.  You can see the twinkle in his eye:

Bernard A. Silverman, publisher of the "Hydro-illogic Cycle" at the Cape Town, SA, WMO award
Bernard A. Silverman, publisher of the journal article containing the  “Hydro-illogic Cycle” cartoon at the Cape Town, SA, 2006 WMO award ceremony for achievements in weather modification.  He acknowledged in that  1978 article that he was a cloud seeding advocate.

Sunrise, sunset colors drench Gatalina, AZ; Cal storms reach epic proportions

We’re often confused with the California island, Catalina, and even places in Spain.   Google “Catalina” and see if I am lying again. Oh, maybe that was Catalonia, SP…

Nevertheless, isn’t it time to think about a new name for our “Census Designated Place”, Catalina?  In fact, at one time, each Catalina island and our Catalina, each had a marina to further confuse things by adding superficial similarities….

Think about it.

Some sunrise scenes among too many available to the writer from his camera card:

Let's look at the Tortolita Mountains, drenched in sunlight.
Let’s look at the Tortolita Mountains.
DSC_1173
Cirrocumulus on the fade.
DSC_1169
Highlighted Cirrocumulus.
DSC_1161
About as complex as a patch of Cirrocumulus could be. It did seem there were TWO levels of Cirrocu here, which might help explain criss-crossing patterns.
DSC_1152
Nice Altocumulus lenticularis in the usual spot downwind of Lemmon when the flow is from the W-SW up there.
DSC_1147
Wide angle view of our spectacular sunrise. How you experienced it live.

Now, for sunset color:

DSC_1203

5:47 PM. Will think of something later.
5:47 PM. Will think of something later.

As you may know, there is some violent weather hitting the West Coast, California in particular.  Let’s see what the Reno office of the NWS has to say about the incoming storm:

“…BLIZZARD WARNING IN EFFECT UNTIL 10 AM PST WEDNESDAY…

...WINTER STORM WARNING IN EFFECT FROM 10 AM WEDNESDAY TO 4 AM
PST THURSDAY...

THE NATIONAL WEATHER SERVICE IN RENO HAS ISSUED A BLIZZARD
WARNING, WHICH IS IN EFFECT UNTIL 10 AM PST WEDNESDAY. THE WINTER
STORM WARNING IS NOW IN EFFECT FROM 10 AM WEDNESDAY TO 4 AM PST
THURSDAY.

* TIMING: DANGEROUS BLIZZARD CONDITIONS DUE TO HEAVY SNOW AND
  STRONG WINDS WILL CONTINUE TODAY THROUGH WEDNESDAY MORNING.
  PERIODS OF MODERATE TO HEAVY SNOW WILL CONTINUE THROUGH
  WEDNESDAY NIGHT.

SNOW ACCUMULATIONS THROUGH THURSDAY MORNING: 5 TO 10 FEET ABOVE 7000 FEET WITH 3 TO 7 FEET AT LAKE TAHOE LEVEL.

(Note:  The large font size, the capitalization, suggest, as we know, that the writer is screaming, which I am.)

* WINDS: SOUTHWEST 20 TO 30 MPH WITH GUSTS TO 60 MPH THROUGH
  WEDNESDAY MORNING. SIERRA RIDGE GUSTS OVER 100 MPH.

* SNOW LEVELS: BELOW LAKE LEVEL...MAY BRIEFLY RISE TO 6500 FEET
  THIS AFTERNOON BEFORE FALLING AGAIN.

* IMPACTS: DANGEROUS LIFE THREATENING BLIZZARD CONDITIONS WITH
  NEAR ZERO VISIBILITY WILL EXIST FOR TRAVEL AND OUTDOOR
  ACTIVITIES WITH HEAVY SNOW ACCUMULATION ON ALL SIERRA ROADS.

PRECAUTIONARY/PREPAREDNESS ACTIONS...

THIS IS A LIFE THREATENING SITUATION. DO NOT ATTEMPT TO TRAVEL!
ROAD CREWS AND FIRST RESPONDERS MAY NOT BE ABLE TO RESCUE YOU.
STAY INDOORS UNTIL THE SNOW AND WIND SUBSIDE. EVEN A SHORT WALK
COULD BE DEADLY IF YOU BECOME DISORIENTED1."

As we know, extremely heavy snows in the Sierras can trigger cannabalism, It is our sincere wish that those affected by this severe storm curb his or her appetite for humans, i.e,  that cannibalism does not break out in the Reno-Tahoe area, or ANYWHERE (capitalization for emphasis) in the Sierras during this terrible storm or its aftermath.

The End
————————–
1Thanks to Prof.  (emeritus) Roger Pielke, Sr., Colo State, for passing this warning along.  His son, a great scientist as well, btw, has the exact same name, and that’s why THIS Roger goes by “senior.”  Thought you’d like to know that.