More patterns galore, but with natural holes in them that made for an extra fascinating day!

The TUS balloon sounding launched at around 3:30 PM from the Banner University of Arizona
The Banner NWS TUS balloon sounding launched at around 3:30 PM from the Banner University of Arizona.  The temperature of the Cirrocumulus was indicated to be about -36° C, at about 26,000 feet above Catalina (29,000 feet ASL) and yet portions of the Cc had liquid droplets.  The higher vellums of Cirrostratus or Cirrus were located.

Photos of yesterday’s patterns

I could literally hear the cameras clicking all over Catalina and Oro Valley as these patterns showed up, moving in from the southwest as the increasing numbers of cloud-centric folk lost control of themselves.  Reflecting that general loss of control, which affected yours truly, too many photos will be posted here.  Below holey clouds with icy centers, but not ones caused by aircraft:

DSC_3203 DSC_3201 DSC_3198 DSC_3197 DSC_3187 DSC_3186 DSC_3181

And look closely at the fine patterns, lines and granulations in these shots!  Truly mesmerizing.

DSC_3222 DSC_3221But what’s missing in this photo above?  There was no iridescence seen around the sun where we normally look for it suggesting that those Cirrocumulus clouds nearest the sun were composed of ice crystals, and not tiny droplets.    Iridescence is rarely seen next to the sun due to ice crystals because they are usually the result of the freezing of existing droplets, that then grow rapidly as ice particles to sizes too large to produce diffraction phenomenon  close to the sun.  Where’s my Lear jet,  so’s I can confirm these speculations?!!  I would very much like to have one on “stand by”, in case I think of something.  Below, a wonderful example of no iridescence even though newly formed clouds are by the sun:

4:21 PM. An outstanding example of no iridescence, maybe one of the best ever taken!
4:21 PM. An outstanding example of no iridescence, maybe one of the best ever taken!  The power pole shows signs of being in an archaic neighborhood.

A jet runs through it

Or so I thought.  In this chapter of cloud-maven.com, we inspect the photos of a commercial jet flying at or near the level of these clouds and determine what happened.  I was quite excited to see this happen because we would now determine whether there were any liquid droplets in what to the eye of the amateur cloud watching person would be a liquid droplet Altocumulus clouds.  Here the size of the elements are just a bit too large to lump it into the Cirrocumulus category, if you care.  So, with heart pounding, took this sequence of photos:

4:23 PM. A commercial jet streams into it seems, the Altocumulus layer. Or did it? CMP thought so.
4:23 PM. A commercial jet streams into it seems, the Altocumulus layer. Or did it? CMP thought so.

Let is go zooming:

4:23 PM. Looks to have descended to below this layer. Note sun glint on aircraft.
4:23 PM. Looks to have descended to below this layer. Note sun glint on aircraft.
4:23 PM. Zoomin' some more.
4:23 PM. Zoomin’ some more.
4:26 PM. But, as the location of the aircraft path slipped downwind rapidly, there was NOTHING! I could not believe it! No ice canal with a clearing around it, and no contrail inside these clouds. The clearing would have occurred had the aircraft penetrated supercooled droplets leaving an ice canal. But, if the cloud was all ice, a penetration by an aircraft should have left a contrail, as they do in cirriform clouds. The conclusion? As close to this layer as the aircraft was, it did NOT apparently go into it. Amazing to this eye.
4:26 PM. But, as the location of the aircraft path slipped downwind rapidly, there was NOTHING! I could not believe it! No ice canal with a clearing around it, and no contrail inside these clouds. The clearing would have occurred had the aircraft penetrated supercooled droplets leaving an ice canal. But, if the cloud was all ice, a penetration by an aircraft should have left a contrail, as they do in cirriform clouds. The conclusion? As close to this layer as the aircraft was, it did NOT apparently go into it. Amazing to this eye.
4:25 PM. Looking downwind at those "Altocumulo-cirrus" clouds, all ice from almost the very leading, upwind edge due to that -36°C temperature they were at.
4:25 PM. Looking downwind at those “Altocumulo-cirrus” clouds, all ice from almost the very leading, upwind edge due to that -36°C temperature they were at.  Though overhead, as you saw in the photos below, they might be reckoned as plain Altocumulus, and not solely composed of ice ones.

By the way, if you caught it, there were a couple of standard, aircraft-produced, “hole punch” clouds at the very upwind, formative portion of this patch of clouds before it got here. These photos pretty much prove that the Cc at the formative end at that time was composed of highly supercooled droplets and that the passage of an aircraft produced ice, that caused a fall out hole.

1:52 PM. Hole punches caused by aircraft in the Cirrocumulus to Cirrus patch that moved over us later. Clouds like these do not move at the speed of the wind, about 60mph up there yesterday at this level, but rather, the air moves through it a hump in the airflow that moves much more slowly than the wind.
1:52 PM. Hole punches caused by aircraft in the Cirrocumulus to Cirrus patch that moved over us later. Clouds like these do not move at the speed of the wind, about 60mph up there yesterday at this level, but rather, the air moves through it a hump in the airflow that moves much more slowly than the wind.  Note the slight iridescence in the hole on the right.

 

The End–quite enough, eh?

High cold ones, and lots of patterns in a complex sky

In particular, those Altocumulus clouds, “cold” Cirrocumulus (ones that transform to ice immediately),  and those “Altocumulocirrus” clouds combining  with  scenes of “regular” cirriform clouds.  Lots of interesting sights to have seen yesterday.  All these the result of marginal moisture aloft and strong winds, up around 100 mph at the highest Cirrus levels.

Let us begin as cloud maven folk by examining the late afternoon sounding launched from our Wildcat balloon launching machine at the University of Arizona, courtesy of IPS Meteostar:

The temperature and humidity profile obtained from a weather balloon launched at about 3:30 PM yesterday afternoon from the U of AZCats.
The temperature and humidity profile obtained from a weather balloon launched at about 3:30 PM yesterday afternoon from the U of AZCats with some suggested cloud levels.  The Altcoumulus level is in doubt. the others are pretty straight forward.  Notice how high those little Cu were yesterday afternoon, about 16,000 feet above sea level, or about  13,000 feet above Catalina, with bases at a cold -13°C or so.  No ice came out of those, though.  Likely droplets too small, or short-lived.
DSC_3122
6:45 PM. A very narrow line of Altocumulus castellanus and floccus virgae approaches Catalina.
DSC_3123
6:46 PM. Let us exercise our curiosity and examine this element in more detail below.
6:47 PM. Altocumulus floccus virgae. Another example of how the top of a storm, as here, can be composed of droplet cloud while the ice that forms in it falls out below. Here, the extreme dryness underneath the Altocu prevents long trails. The ice crystals wither so that they have almost no fallspeed soon after they have fallen out, leaving a flat bottom of tiny ice crystals.
6:47 PM. Altocumulus floccus virgae. Another example of how the top of a storm, as here, can be composed of droplet cloud while the ice that forms in it falls out below. Here, the extreme dryness underneath the Altocu prevents long trails. The ice crystals wither so that they have almost no fallspeed soon after they have fallen out, leaving a flat bottom of tiny ice crystals.  When you see tiny cloudlets like this spewing ice, you KNOW that the temperature has to be extremely low, and colder than -30° C (-22°C) would be a good starting guess.  Actually, guessing “-31.3° ” would be more impressive to your friends or neighbors….   It was a pretty scene, that’s for sure.
5:37 PM. Pretty iridescence occasionally erupted in newly formed Cirrocumulus, newly, as within seconds or in the last minute when the cloud droplets are extremely tiny, less than 10 microns in diameter. You don't see iridescence in clouds with droplets much larger than that.
5:37 PM. Pretty iridescence occasionally erupted in newly formed Cirrocumulus, newly, as within seconds or in the last minute when the cloud droplets are extremely tiny, less than 10 microns in diameter. You don’t see iridescence in clouds with droplets much larger than that.  And, it has to be pretty much overhead to get the best views.  Hope you saw those yesterday.
5:41 PM.
5:41 PM.
5:43 PM. ??????? These are little cloudlets of ice up at Cirrus levels, but it looks exaclty like a field of normal Altocumulus to the ordinary eye. "Altocumulocirrus"?
5:43 PM. ??????? These are little cloudlets of ice up at Cirrus levels, but it looks exaclty like a field of normal Altocumulus to the ordinary eye. “Altocumulocirrus”?  Without doubt this “ice” composition would be contested by other observers.  However, cloud-maven person’s interpretation should be used.  Now it is likely that the ice in these clouds first formed on what we deem as “cloud condensation nuclei”, and it might be likely that water saturation was reached.  But, if there was an instant of liquid, is certainly transitioned to ice in seconds since the temperatures at Cirrus levels were well below -40° C.   I don’t believe this was at the same level as the Altocu shown in the beginning of this writeup, yet it wasn’t as high as the highest Cirrus yesterday (up around the -50° C level).
6:07 PM. An example of how complicated the cloud scene was yesterday. The whitish clouds in rolls were icy cirriform clouds, and the delicated clouds were HIGHER Cirrocumulus and Cirrus. Cirrocumulus yesterday was indeed where most cloud schematics put it, at Cirrus levels, though probably half the time its in the mid-levels were Altocumulus clouds reside. So, with Altocumulus-like clouds at Cirrus levels and Cirrocu on top of Cirrus, it was really a crazy cloud day yesterday.
6:07 PM. An example of how complicated the cloud scene was yesterday. The whitish clouds in rolls were icy cirriform clouds, and the delicated clouds were HIGHER Cirrocumulus and Cirrus. Cirrocumulus yesterday was indeed where most cloud schematics put it, at Cirrus levels, though probably half the time its in the mid-levels were Altocumulus clouds reside. So, with Altocumulus-like clouds at Cirrus levels and Cirrocu on top of Cirrus, it was really a crazy cloud day yesterday.  At the very top of this photo were Altocu that were immediately ice clouds that might have comprised a separate third level of clouds.  Need a Lear jet to get there fast to resolve these many guesses.
5:07 PM. Jumping around in time.... These were some of the best scenes yesterday IMO, those oh-so-delicate patterns in those cold Cirrocumulus clouds, ones that transitioned to Cirrus clouds downwind.
5:07 PM. Jumping around in time here…. These were some of the best scenes yesterday IMO, those oh-so-delicate patterns in those cold Cirrocumulus clouds, ones that transitioned to Cirrus clouds downwind.
5:08 PM.
5:08 PM. Same patch Cirrocu.  Note Cirrus forming in the lower portion of this photo, once Cirrocu.  BTW, all power lines should be placed under ground.
2:29 PM. Amid some real Cumulus fractus was some Cirrus "cumulus mimicry" I've termed "Cumulo-cirrus". Can you spot the fakes at Cirrus levels? Its pretty hard.
2:29 PM. Amid some real Cumulus fractus was some Cirrus “cumulus mimicry” I’ve termed “Cumulo-cirrus”. Can you spot the fakes at Cirrus levels? Its pretty hard.
2:29 PM. OK, I give up. Here's a zoomed shot of Cumulus fractus mimicry by clouds at Cirrus levels. Might have been some droplets, too, before converting to ice.
2:29 PM. OK, I give up. Here’s a zoomed shot of Cumulus fractus mimicry by clouds at Cirrus levels. Might have been some droplets, too, before converting to ice.  These kinds of clouds suggest significant turbulence at this level, as would be in a regular Cumulus fractus cloud.

The weather way ahead

Still looking for that chance of rain before July….  haha

Troughy conditions will actually recur aloft over us over the next few weeks it seems, which means slight chances of rain, but periodic cold fronts passing by, mostly dry ones.  Best chance for rain still seems to be around the 20th, plus or minus a day or two, even though mod outputs have backed off that scene.  But, we have our spaghetti that tells us the models will likely bring back that threat around the 20th, even if some individual runs show nothing at all or only close calls.  We shall see if this interpretation has any credibility at all, won’t we?

Of note, Cal having big April in rain and snow after the gigantic January and February accumulations!  Looks like they’ll continue to get slugged by unusually strong storms, off and on, for another couple of weeks.  Water year totals are going to be truly gigantic.

The End

Best chance for April showers in Catalina around the 20th

Cooling off now after the Big Review of NAS 2003…and finally getting back to the lighthearted, carefree, playful, well, silly,  mode normally found here (he sez).

As a brief follow up, I have yet to receive a “thank you very much for your absurdly late review of our tome on cloud seeding; had you submitted it in a timely manner, perhaps one thing you wrote MIGHT have been considered” note from the National Academy of Sciences for all the work I put in on it.   Must be pretty busy back there.

Also, if it didn’t go out “like a lion”,  as foretold here weeks ago utilizing weather lore,  March at least went out as something of a “bobcat” with the severe winds, series of cold fronts, we Catalinans experienced, along with several traces of rain.  “In like a lamb, out like a bobcat.”

The weather way ahead

Spaghetti lovers will INSTANTLY recognize from those maps, of which ONE is shown  for April 20th, that other than wind and “fluctuating temperatures” as dry cold fronts pass by, that there’s no chance of rain until the 20th.  Check it out if you don’t believe me again:

Valid at 5 PM April 20th. Need one say more? Probably.
Valid at 5 PM April 20th. Need one say more? Probably.  Note extreme dip in reddish lines, indicating a high probability of a big trough in the SW US at this time, if you can find the SW US.

 

The End (at least for now)

A review of a review of cloud seeding status by the National Academy of Sciences

I put up a new page on this blog (see top header for “pages”)  for sciency types deeply interested in weather modification/cloud seeding,  my main avocation  “whilst” working in the met sector.    Its a many “commented out” review of NAS03 (shorthand for the National Academy of Sciences tome, published in 2003, “Critical Issues in Weather Modification Research.”  I also post it here for redundancy.  This is what I have been doing lately instead of reporting to you on clouds and dust.

The original document as long, and with insertions and commentaries, well, now what’s here is over 170 pages.  Only the weather mod technocrat among you will truly be interested.  I found a couple of errors, and have done a little re-writing just now (April 4th).

A Critical  Review of the National Academy of Science’s 2003 “Critical Issues in Weather Modification Research”

Why this review is so late is explained, in fact, I tell “all” the good and the bad and delve into, oh,  controversy.  Its not in the usual style of this blog, of course, since its a highly technical review.

Some background, if you care

My first job in the cloud seeding domain was with North American Weather Consultants, Goleta, CA, one of the oldest cloud seeding companies in America.  I was a student hire for the summer of 1968.  I was coming off my Junior year at San Jose State.   Robert D.  Elliott was president and founder of NAWC, which he founded soon after Vincent Schaefer’s stunning dry ice experiments showed that you could cause snow to fall out of supercooled droplet clouds when you converted them to ice crystals.  That precip-forming process is known as the Wegner-Bergeron-Findeisen process.

The remarkable event of that summer was that “Bob’s” friend, Tor Bergeron, (of the Wegner-Bergeron-Findeisen mechanism of rain formation) came one day to visit Bob and I got a photo taken with him!  In case you would like to see me with one of the “Fathers of Rain”, Tor Bergeron , or Tor himself, here it is ( I laugh when I look at this; can pants be any tighter?):

Tor and me, summer 1968, at the headquarters of North American Weather Consultants.
Tor Bergeron and me, summer 1968, at the headquarters of North American Weather Consultants.  He was also very interested in and supportive of cloud seeding.  OK, this shot was meant to provide some humor, something often attempted here.

I loved that job and the people there!  Cloud seeding was so interesting, too!  And I already about 20 years into my cloud-centric life, had chased thunderstorms in the southern Cal and Arizona deserts, and a hurricane in 1961, Carla, by then.  I knew what ice was in the sky.

Things kinda went downhill for me in the cloud seeding arena not too long after that when I joined, as my first job out of college, the Colorado River Basin Pilot Project, a massive randomized cloud seeding experiment that was going to replicate stunning cloud seeding successes published by scientists at Colorado State University.   Winter snowfall in the Rockies had been increased in certain situations by 50-100% in their own randomized experiments!  And the CRBPP was going to target those situations in the random decisions.

I started out as Assistant Project Forecaster in the fall of 1970, and then after some early personnel shuffling, was booted up to “Acting Project Forecaster”, forecasting the weather EVERY day, and calling all the random decisions that first season!  There was no “Assistant Forecaster” any longer.  I loved it!  Couldn’t wait to get to work!

If you don’t believe me that I forecast the weather for random draws in the massive Colorado River Basin Pilot Project cloud seeding experiment right out of college, then you’ll  have to see this “documovie” in which I make a forecast, filmed in the late winter of 1971,  and one that premiered in Durango, CO,  in 1972 (not ’81 as this youtube site claims)1:

Mountain Skywater!

It was SO EXCITING being a part of this grand project!  And who wouldn’t love Durango, Colorado?

But, it turned out that there were lots of problems with the Colorado experimenters hypotheses, and those problems weren’t getting outside of the BuRec and our group.  The wider weather modification community, which so highly regarded the experimenters’ experiments so highly,  remained ignorant of those problems.

Well, during the five years I worked on that project, moved back to “Assistant Project Forecaster” when the second one, Owen Rhea, left after one season and a new Project Manager brought in his own forecaster.

It was later in those five years in Durango with the CRBPP that I abandoned my original Master’s Thesis at San Jose State on southern Cal rainfall trends, and took on  reanalyses of cloud seeding experiments, something that was to go on for the next 35 years or so as “non-funded work”;  weekends, and evenings, mornings before the regular work day at the U of WA.  I was even drafting my own figures in the manuscripts I produced!

I was consumed, as I have been lately, by the lack of reporting, and even false claims in a journal article relative to our CRBPP project in those Durango days, by authors who knew better.   It was truly melodramatic, but I felt someone had to do something about this!

As a cloud watcher, one of the very main things missing from the experimenters’ claims, was the presence, for hours at a time,  of thick, non-precipitating clouds, ripe for seeding, with tops > -23°C, very cold ones.  Instead, the clouds impacting Durango and the surrounding mountains were full of ice, as any cloud watcher could see.  There was no such cloud as the experimenters had inferred via statistical analyses.

Cloud seeding they wrote, had not INCREASED the intensity of  snowfall in their experiments they reported, but must have made it fall from clouds that did snow naturally until seeded. The only evidence they had for the existence of such clouds was that it had snowed longer on seeded days than on control days.

Not only that, seeding had made them snow at exactly the same rate as natural snowfall.  It was a huge red flag for a storm bias in their experiments,  a “lucky draw” or “Type I Statistical Error” for the seeded days.

And that’s what had really happened, among many other pitfalls, as you will read in the linked “review” above.

In conclusion:  you can do a lot over a LONG period when you’re worked up about something!

The End

 

——————————–
1Yes, it was a cloud seeding experiment so important, so much optimism around,  it had its own movie!  And it had a score by local guitar master, Clarence “Gatemouth” Brown!

 

 

Catalina/Sutherland Heights gets its own hourly predicted weather from the U of AZ

On this station plot map for the Tucson area, generated by the University of Arizona’s Hydro and Atmospheric Sciences Department, now has a point for little Catalina/Sutherland Heights!   Check it out.  Sample map below.  Now you can see how our predicted weather varies with those points around us over the next few days.  How great is that?Ann Catalina:Sutherland Heights stationSome rain from our incoming cold front is just about here as a line of showers approaches from the west.  Hoping now for a tenth of an inch is all.

Yesterday’s clouds

Had some nice scenes late of little Altocumulus castellanus shedding light snow showers or “virga.”

DSC_2775
6:01 PM.
DSC_2771
6:01 PM. Looking at this line farther downwind, you can see, maybe, that its converting to ice on the far right. So, these Altocu must be awfully cold, at least -25° C I would guess. Estimated bases are at about 18,000 feet above the ground.
DSC_2773
Also at 6:01 PM. Here you can see that those little tufts of water have completely converted to ice down stream (lower right). For this to happen at Altocumulus level takes very low temperatures. Now I will look at the NWS balloon sounding and see if I have come close at all to this height and temperature. Its gotta be way up there.
Ann 2017032300Z_SKEWT_KTUS
The TUS sounding launched from the U of AZ yesterday around 3:30 PM. I had not seen this until just now! But you can see that the height and temperature estimates were pretty close. Height above Catalina was about 18,000 feet, 21,000 above sea level.
DSC_2788
6:51 PM. The clearing before the storm. Those higher clouds departed, and the lower moisture and clouds that will comprise our chance of rain, began to appear on the NW horizon. Can you see that those tops have ice in them?

 

The weather ahead and way ahead

March. a lamb upon entry,  will roar on the way out.  While only a little rain will likely fall today, several more troughs are in the works, during the next ten days and they are looking much more potent than today’s trough and front passage, probably bringing cold enough air that some people will start complaining about how cold it is; probably me.  Looks, too, like abnormally cool weather will cruise right in to the first week or two of April.  Bye-bye heat!

The End

“Peru’s Niño”

I thought you’d like to read this (Peru’s Niño), forwarded to me by Niño expert, Nate M.   Pretty incredible to read about what is happening down there in the wake of the Big Niño of 2015-16,  which really turned out to be more of a couch potato in terms of weather production in the Great SW.

But, all this winter,  along the Equator near the coast of South America, there has been something we used to call an “El Niño”,  but is downplayed or ignored these days because of a new definition that seemed to explain more weather when it occurred, “Region 3.4” a large zone along the Equator WAY out in the Pacific rather than something near the South American coast (that zone now called, “Regions 1 and 2”),  as nicely illustrated by NOAA here.

But what has been the effect of what we might call the “Classic Niño”, a warm strip of water along the South American coast, one that doesn’t extend too far into the Pacific?  “Read all about it”, as they used to say.   Its pretty remarkable.

And here’s what the SST field looks like.  Its boiling down there off South America!  (Speaking figuratively, of course):

Sea surface temperature anomalies as of yesterday from the Navy!
Sea surface temperature anomalies as of yesterday from the Navy!  Wow.  That hot water is fueling giang Cumulonimbus clouds, ones that spew out huge anvils that can affect the weather in the mid-latitudes, disrupt the normal winter patterns of where highs and lows like to go.  Could such a warm anomaly, limited to the near coastal region of South America, have created this astounding winter in the West?

Peru’s Niño can be thought of as a “classic Niño”, the ones written about in the decades before about 1990 or so when the definition of what constituted a  NIño (or Niña) was expanded and delineated more sharply among several definitions that were floating around. We ended up focusing on a region WAY out in the Pacific Ocean called, “Region 3.4” that SEEMED to explain more over the prior years.

What’s so interesting about this is that the “Classic Niño” has been underway pretty much all this winter, and we’ve had, especially in California, a classic Niño response; that is,  abnormally heavy precip farther down the West Coast that no one anticipated.

Hmmmmm.

Well, the correlations with Cal precip and “classic Niño” occurrences will take a huge jump upward after THIS winter!

End of Statement (hand-waving)  on Niñoes.

——————————–

Local weather statement:  for immediate release

Cooler, fluctuating weather foretold here for that latter part of March, I don’t know how many weeks ago, is on the doorstep after the long, anomalously hot dry spell.  Poor wildflowers have been suffering, too, fading, looking a little stunted after a great beginning, one rivaling the great displays of 2010.

All of the local weatherfolk are on top of this now, and so no point recasting that stuff.  HECK, you can go to Weather Underground1
and get as “good as can be” forecast for Catalina (Sutherland Heights) out to ten days!  And, there’s nothing worse for a weather forecaster with forecasting in his blood, than to be excited about an “incoming” and when you mention it to a neighbor he replies, “Yeah, I heard about that already.  Supposed to get a quarter of an inch.”  There is no air whatsoever in the “balloon” after that.  So, if you have a weather-centric friend who says something about the upcoming weather, pretend that you haven’t heard about it yet, “DON’T say something as hurtful, as “Yeah, I heard about that already.”

So, here, we go the long route because most weatherfolk are afraid to go too far into the future because its often WRONG.  Our models tend to lie a lot after about even a week, so only the brave go out even ten days!

However, here, we go out as much as two weeks and more because its not a truly professional site but rather want to get something out there earlier than other people, sometimes called a “scoop” in the news and weather business.  That’s why our motto here is, “Right or wrong, you heard it here first!”  Furthermore, if a longer range forecast posted here is WRONG, you won’t hear about it anymore!

Cloud maven person will say this about the first incoming of several fronts:  comes in early Thursday morning, its strong!    Rainfall potential:  10% chance of less than 0.12 inches, 10% chance of more than 0.75 inches.  Best of those is the average, or about 0.4350 inches in this one.  It has great POTENTIAL to be a soaker, but mods have been all over the place; hence, the large range of potential amounts.  At least some measurable rain seems to be in the bag, a paper one please, because plastic is insidious.  Note, CMP’s forecast is more generous than that found in WU’s latest forecast for Catalinaland.

The weather WAY ahead, unprofessionally so

Let us look beyond the professional forecasting limits to April:

We know we got several storms/fronts zipping across AZ as March goes out like a lion, but what about April?

Looks like that pattern will continue into April with temperatures below normal for the first part.  The end of the unprofessional forecasting portion of this blog, though we do have our NOAA spaghetti to hang our umbrella on….  Check it out for about two weeks ahead.

Some clouds recent clouds, including a couple from yesterday

DSC_2744
2:33 PM.  Yesterday afternoon saw a few globs of lenticular forming on top of mini_Cumulus clouds, ones that made you think the summer rain season could be at hand, given the 90+ heat of yesterday around these parts.
12:52 PM.
12:52 PM.  A high  (above 30 kft above the ground) and cold (less than -40°C patch of Cirrocumulus cloud that is going to transition to CIrrus over the next 10-20 minutes.
DSC_2737
1:12 PM:  Later that same patch as those cloudlets spread out and merge into just an ordinary Cirrus after being that delicate-looking patch of Cirrocumulus. Most Cirrocumulus clouds are not this cold, but rather evaporate or fatten into larger elements of “Altocumulus” clouds, rather than transition to Cirrus.
DSC_2728
Had a nice sunset a couple days ago (15th), some liquid Altocumulus cloud slivers with higher Cirrus.

The End

———————–
1Although “Weather Underground” might sound like an org has a radical origin, maybe something left over from the late 1960s, this particular one was NOT formed by 60s “weatherman” terrorists like Bill Ayers and Bernadine Dohrn (the link is for those of you who may have set trash cans on fire, as happened at San Jose State to protest the Vietnam War, to look back at those days in horror or nostalgia; take your pick) , but rather by genuine weather geeks (haha, I count myself among them, those that can’t get enough of weather, there can never be too much, like the guys mentioned in this “Cloud City” article.)

March 2017: In like a lamb, out like a lion? Yep.

The title represents one of the great forecasting lores of our time, developed over centuries, really, that will once again verify.   BTW, this particular lore has a “skill score” up around 0.9011.   Its unbelievable,  really.  If March “roars in like a lion” count on the opposite at the end of the month.  Many of you will harken back to March ’83….as an opposite example if what’s a ahead for us this time around.

So, since March 2017 started out tranquil (docile, like a lamb) and a little too warm, “out like a lion” means not just cooler, but even cold, windy, turbulent, unsettled days,  rain here  and there in Catalina, snow in Catalina Mountains; in other words, a lot of weather fun!  And, all this happening a time or three during the last ten days of the March as the month rolls to an end.

Count on it2.

Next report:  when rain threatens here in March.  Well, maybe sooner.

The End.

——————————

1Perfect predictability would be 1.00

2The exact days of rain, wind and cold are still pretty uncertain, but they will roar in.  You can’t expect “lore” to nail down the days!

Catalina WY progress report; Cal WY update, too, since I grew up in Cal

I thought you’d like to see this:

As of the end of February 2017. We're pretty average, but it took some "heavy lifting" in December and January to get there.
As of the end of February 2017.  You can see were right about at the average for the Water Year,, but it took some “heavy lifting” in December and January to get there.

Doesn’t look promising for much rain here in Catalina in March, however.  No rain in sight through the next 10 days at least.

Let’s check our 7 inches with what’s happening upwind, say, in CALIFORNIA, and see if there’s been any drought relief there, through February,  via the CNRFC:

California water year totals through the end of February 2017. Note one station in the central Califorina coastal range is already over 100 inches!
California water year totals through the end of February 2017. Note one station in the central Califorina coastal range is already over 100 inches!  There are 20 stations already over 100 inches as can be seen from the table at right.  March looks to have substantial rains north of SFO, which will add appreciably to those highest totals.  Amazing!  You can go to the CNRFC and expand these interactive maps, btw.

As you are likely to know from many media stories last year, Cal was in a drought siege of five straight years,  with but got a little relief last year in the northern part thanks to help from  the giant Niño, one of the strongest ever.

Alas, it was one that failed to deliver as the big rain producer for the south half of Cal and the SW in general as was expected.

In case you’ve forgotten how bad things were in Cal, let us look back at what was being said, those horrific appearing drought maps,  and also how hopeful were were at the time  that the Big Niño would take a bit bite out of drought.  This is a really good article:

https://www.climate.gov/news-features/event-tracker/how-deep-precipitation-hole-california

Then, when the Big Niño faded away like maple syrup on a stack of buckwheat pancakes last spring and summer,  we were surely doomed for more dry years.  And, for a time, the dreaded cold tongue of water in the eastern equatorial region, the so-called, La Niña, started to develop, which would be no help at all for  a good rain season like a Big Niño is, usually.

The Niña faded away, too, to nothing as the winter went on, so we really didn’t have much going on in the tropical Pacific to help us figure out what kind of winter rainfall regime we were going to have om 2016-17.  Not having anything going on meant winter rainfall could go either way, a difficult to figure out situation for season forecasters.

In retrospect it is pretty astounding how big a signal must have been out there SOMEWHERE that this winter was going to be one for the history books on the West Coast in general, and in particular, for Californians.  Californians saw their drought chewed up and spit out in a single winter, including snow packs so high the height of some mountain peaks have been revised.  (I’m kidding.)

No one saw such an astounding winter coming.

This winter sure makes one think of the QBO (Quasi-biennenial Oscillation, one up there in the Stratosphere where there’s almost no air (haha, well, practically none)…  Did the QBO have a role in this astounding winter;  was there a delay in the effects of the Big Niño even without a bunch of convection in the eastern Pac tropics?  Doesn’t seem that could be right…

But, William “Bill” Lau, U of Maryland scientist,  reported some statistical evidence of  such a lag way back in ’88 due to a QBO connection of some kind and ENSO, no physical cause could be discerned, however,  not yet,  anyway.  Lau, 1988, is reprised below for readers who want to go deep:

Annual cycle, QBO, SO on global precip J Geophys Res 1988ocr

Sure has looked like the Big Niño WY we expected last year!

Some recent clouds; after all, this is CLOUD maven, not RAIN maven:

I’ve been kind of holding out on you.  I dropped my camera and busted it.  Its no fun taking pictures when you don’t have a real camera.  Still doesn’t work right, but take these anyway:

March 4th, afternoon. Hope you logged this; the rarely seen CIrrus castellanus (almost "congestus" in size) or, informally, "Cumulo-cirrus."
March 4th, afternoon. Hope you logged this; the rarely seen CIrrus castellanus (almost “congestus” in size) or, informally, “Cumulo-cirrus.”
Poppies are out, btw. Nice display on "Poppy Hils" just across and southwest of the Pima County Pistol Club, off Bowman.
Poppies are out, btw, in case you haven’t noticed. Nice display on “Poppy Hils” just across and southwest of the Pima County Pistol Club, off Bowman.
DSC_2499
March 4th, late afternoon. Nothing terrifically special in this tangle of Cirrus spissatus (“Cis spis” to cloud folk) but I thought it was just a really nice scene

Moving to the next day, Sunday, that REALLY windy day:

March 5, Sunday morning 6:13 AM. Altocumulus lenticularis alerts cloudwise folk to the possibility of windy conditions although it was already windy.
March 5, Sunday morning 6:13 AM. Altocumulus lenticularis alerts cloudwise folk to the possibility of windy conditions although it was already windy.
3:55 PM, March 5th. After a day of solid Altostratus overcast with underlying Cumulus and Stratocumulus, a layer of Altocumulus began to move in to add a little more interest to the sky.
3:55 PM, March 5th. After a day of solid Altostratus overcast with underlying Cumulus and Stratocumulus, a layer of Altocumulus began to move in to add a little more interest to the sky.
3:57 PM. Looking to the north revealed that some of the lower Cumulus/Stratocumulus complexes reached heights where ice could form. That smooth region on the bottom and right side of the cloud is a fall of ice from this cloud with a RW- (text for "light rainshower") if you like to text stuff) right below that. This is not a lot of ice and so you'd be thinking the cloud barely made that ice-forming temperature.
3:57 PM. Looking to the north revealed that some of the lower Cumulus/Stratocumulus complexes reached heights where ice could form. That smooth region on the bottom and right side of the cloud is a fall of ice from this cloud with a RW- (text for “light rainshower”) if you like to text stuff) right below that. This is not a lot of ice and so you’d be thinking the cloud barely made that ice-forming temperature.  CMP doesn’t think it was caused by an ice fallout from that higher layer, which sometimes can happen.  Let’s look at the most timely sounding, just to check.  From the real Cowboys at the University of Wyoming, this:
Ann 2017030600.72274.skewt.parc
The TUS sounding which I only now just saw, showing a vast separation between the lower Stratocumulus and the higher layers of Altocumlus and Altostratus on top. Note, too, that over TUS the tops of the lower cloud is not quite at -10°C the temperature we start to look for ice formation in AZ. However, our clouds were NW of that balloon sounding, and it would have been that tiny bit colder, and tops were also lifted some when they passed over the Tortolitas earlier, meaning that the tops of this complex were colder than -10° C (14° F) at some point.

Wow, too much information….after a hiatus in blogging I feel like that  Oroville Dam in California, metaphorically overflowing with too much hand-waving information.

6:03 PM, March 5. Its still real windy. Line of virga brought a few drops when it passed overhead at 6:30 PM.
6:03 PM, March 5. Its still real windy. Line of virga brought a few drops when it passed overhead at 6:30 PM.
6:04 PM. Nice dramatic shot toward Marana as the backside of the middle cloud layer approached allowing the sun to shine through.
6:04 PM. Nice dramatic shot toward Marana as the backside of the middle cloud layer approached allowing the sun to shine through.
6:09 PM. Virga getting closer. May have to park car outside to make sure I don't miss any drops!
6:09 PM. Virga getting closer. May have to park car outside to make sure I don’t miss any drops!
6:22 PM. SW-NE oriented virga strip about to pass overhead. Drops fell between 6:30 and 6:40 PM, but you had to be outside to notice, which you would have been as a proper CMJ eccentric.
6:22 PM. SW-NE oriented virga strip about to pass overhead. Drops fell between 6:30 and 6:40 PM, but you had to be outside to notice, which you would have been as a proper CMJ eccentric.  You would have WANTED that trace of rain report, maybe slackers would not have observed.
6:30 PM. Climax; the great sunset allowed by that backside clearing.
6:30 PM. Climax; the great sunset allowed by that backside clearing.

The End, at last!

Lots of interesting clouds yesterday; partial double rainbow, too

Light rain showers overnight, just before midnight, and again just after 1 AM AST,  raised our Sutherland Heights storm total to 0.33 inches, decent but disappointing in view of model and personal expectations (0.60 inches).

What was especially interesting is that those nighttime light showers didn’t show up on the TUS radar, suggesting very shallow tops, perhaps a “warm rain” event, one not having ice, or an “ice multiplication” event with tops warmer than -10° C, about where the tops were on the 5 PM AST TUS sounding.

By this morning, the tops were barely below freezing (about -3° C).  Don’t expect to see ice today, except at Cirrus levels!

5:53 PM.

5:53 PM.

5:52 PM. Drawing back a little.
5:52 PM. Drawing back a little.  Pretty dramatic scene I think with that sun break running along there underneath the Stratocumulus clouds.
7:06 AM. Had another round of amazingly shallow Stratocumulus clouds precipitating on the Catalina Mountains. Hardly any depth at all to this cloud, and yet there the precip on the mountain!
7:06 AM. Had another round of amazingly shallow Stratocumulus clouds precipitating on the Catalina Mountains. Hardly any depth at all to this cloud, and yet there the precip on the mountain!  Tops were hardly higher than Ms Mt Sara Lemmon!  Must have been drizzle.  Let’s check the sounding nearest this time, see what’s up:
The NWS at the U of AZ balloon sounding, launched around 3:30 AM. Seems to indicate cloud tops were colder than -10°C, plenty cold enough for ice formations, so not as exciting as if they were, say, at -5°C.
The NWS at the U of AZ balloon sounding, launched around 3:30 AM. Seems to indicate cloud tops were colder than -10°C, plenty cold enough for ice formations, so not as exciting as if they were, say, at -5°C.  So, I retract my excitement excitedly!
11:00 AM. Still overcast with Stratocumulus clouds, but occasionally ones showing precipitation, making them the whole scene, Stratocumulus stratiformis (covers a big portion of the sky) "praecipitatio" (is emitting precip, here maybe drizzle) or it may be very light snow. You can just make out the snowline, around 6,000 feet on the Cat Mountains.
11:00 AM. Still overcast with Stratocumulus clouds, but occasionally ones showing precipitation, making them the whole scene, Stratocumulus stratiformis (covers a big portion of the sky) “praecipitatio” (is emitting precip, here maybe drizzle) or it may be very light snow. You can just make out the snowline (center), around 6,000 feet on the Cat Mountains.
2:01 PM. Eventually the sky broke open to reveal that deep blue we see in the wintertime as Cumulus clouds began to take shape. Aren't these scenes tremendous, so clean looking, like you're out at sea, far away from land.
2:01 PM. Eventually the sky broke open to reveal that deep blue we see in the wintertime as Cumulus clouds began to take shape. Aren’t these scenes tremendous, so clean looking, like you’re out at sea, far away from land?
3:51 PM. Gradually the tops of the Cumulus clouds reached up to lower temperatures where ice could form and something resembling our summer rain shafts began to appear here and there.
3:51 PM. Gradually the tops of the Cumulus clouds reached up to lower temperatures where ice could form and something resembling our summer rain shafts began to appear here and there.
5:12 PM. The front side of somebody's nice rainbow.
5:12 PM. The front side of somebody’s nice rainbow over there toward Marana.
5:45 PM. And a little before the rainbows, some nice, dramatic lighting on our desert vegies under a dark overcast of Stratocumulus.
5:45 PM. And a little before the rainbows, some nice, dramatic lighting on our desert vegies under a dark overcast of Stratocumulus.

Last of the Cal rain blasters is making its way across the State today, with another 5-10 inches expected in favored Sierra and coastal ranges in the next 24-36 h. Numerous sites north of SFO have now logged over 100 inches since October 1st!  Imagine.  Great to see that Cal drought vanquished in a single year, so unexpected.  Let’s hope the Oroville Dam, N of Sacto, holds.

The End

PS: Using point and shoot cam now with “real” camera in the shop for awhile.