A Review and Enhancement of the Cloud Seeding Chapters in the 2007 book, “Human Impacts on Weather and Climate”

Another in a continuing possibly semi-useless series by this author….  This example probably indicates why I am not asked to review manuscripts in my expertise; cloud seeding and ice formation in clouds.  I try to follow in the footsteps of meteorologist and MIT faculty member, Fred Sanders, of whom it was said, “His reviews were sometime longer than the manuscript he was reviewing.”  I bet he didn’t get many manuscripts to review, either!

Oh, well, “we” trudge on.

——————-

Comments and “enhancements” on this work by my friends, William R. “Bill” Cotton and Roger Pielke, Sr., are in red. Necessarily, I am only presenting those portions of Cotton and Pielke’s book (those on cloud seeding) that require an “enhancement” or corrections for the reader and I have attempted to do this delicately.  Fortunately, because both are major scientists, they do not respond to criticism with emotion and are quite happy to see errors in their work corrected.  🙂

For the actual, extensive text leading up to these comments, you’ll have to buy the book.  Dashes are inserted where material, usually extensive,  is skipped to avoid too much copyright infringement.

Summary

The first three chapters are an excellent overall introduction to the topic  of weather modification.  The “Reference” section alone makes it worth the purchase of this book since it covers so much of the climate domain up to 2006.  The weather modification references needed beefing up and are done so here.

Oh, some background on what the climate was doing when this book on climate came out…  

Cotton and Pielke, Sr.’s book, hereafter,  “CP07,” came out during the middle of a hiatus in global warming, discussed a few years later in Science magazine by its reporter, Richard Kerr (2009) in, “What Happened to Global Warming?”  

About the time CP07  was published it also marked a time when the phrase, “global warming” (which was no longer occurring for unknown reasons) began to recede in use and was supplanted by the phrase, “climate  change,” something that is always happening on this great planet.  It made sense to change phrases since “climate change” would always be true whereas “global warming,” as we were learning in the 2000-2010 era, might not be.  (An aside:  I am a believer that CO2 will warm the earth in the decades ahead, but not catastrophically; I am strongly influenced in this belief by “influencers,” Roger Pielke, Jr., climate and policy expert, formerly of the University of Colorado but pushed out,  and Cliff Mass, weather and climate expert, still “intact male” at the University of Washington thanks solely to tenure.

Let us begin the review of CP07 with their acknowledgments which required an insertion by this writer:

Acknowledgments for CPO7

 The study of human impacts on weather and climate continues to be a high- interest topic area, not only among scientists but also the public. Our second edition has continued to build on our funded research studies from the National Science Foundation, the National Aeronautics and Space Administration, the Environmental Protection Agency, the Department of Defense, the National Oceanic and Atmospheric Administration, and the United States Geological Survey. Our numerous research collaborators at the Natural Resource Ecology Laboratory and Civil Engineering at Colorado State University have continued to provide valuable in sight on this subject. Over our multidecadal career, the fundamental insights into weather and climate provided by our education at the Pennsylvania State University have become increasingly recognized. We also want to recognize the perspective on these subjects, and science in general, that Robert and Joanne Simpson have provided us in our careers. Their mentorship and philosophy of research, of course, is but one of their many seminal accomplishments.

Roger Pielke would like to thank everyone who contributed to compiling the information in Tables 6.2 and 11.2 especially Roni A vissar, Richard Betts, Gordon Bonan, Lahouari Bounoua, Rafael Bras, Chris Castro, Will Cheng, Martin Claussen, Bob Dickinson, Paul Dirmeyer, Han Dolman, Elfatih Eltahir, Jon Foley, PavelKabat, George Kallos, Axel Kleidon, Curtis Marshall, Pat Michaels, Nicole Molders, Udaysankar Nair, Andy Pitman, Adriana Beltran-Przekurat, Rick Raddatz, Chris Rozoff, J. Marshall Shepherd, Lou Steyaert, and Yongkang Xue. In addition, Roger would like to thank Dr. Adriana Beltran for her assistance with figures in this edition.

As is always the case, Dallas Staley’s editorial leadership and Brenda Thompson’s assistance in completing the book has been invaluable and is very much appreciated.

However, we are unable to thank Mr. Arthur L. Rangno for his review of this book before it was published because we forgot to ask him.  Mr. Rangno is an acknowledged expert with several peer-reviewed publications on two of the cloud seeding experiments reviewed in this book; those carried out by Colorado State University (the home institution of CP07) at Climax and Wolf Creek Pass, Colorado, and those carried out in Israel conducted by the Hebrew University of Jerusalem.  Namely,  Art didn’t do sh. to improve our book beforehand since we also mostly ignored his scintillating 1997 email concerning the first edition of our book, CP95.  Nevertheless,  we are happy to have him review our 2nd edition (CP07) belatedly, i.e., provide a few review “cow pies” here and there on some of our otherwise excellent work.”  (Fake quote.)

If you would like to see how truly “scintillating” my email was to the lead author, go here

Chapter 1:  The rise of the science of weather modification by cloud seeding

Throughout history and probably prehistory man has sought to modify weather by a variety of means. Many primitive tribes have employed witch doctors or medicinemen, and human sacrifices to bring clouds and rainfall during periods of drought and to drive away rain clouds during flooding episodes. Numerous examples exist where modern man has shot cannons, fired rockets, rung bells, etc. in attempts to modify the weather (Changnon and Ivens, 1981).

—————

Seeding of supercooled cumulus clouds produced more controversial results. Dry ice and silver iodide seeding experiments were carried outat a variety of locations with the most comprehensive experiments being over New Mexico. Based on four seeding operations near Albuquerque, New Mexico, Langmuir claimed that seeding produced rainfall over a quarter of the area of the state of New Mexico. He concluded that “The odds in favor of this conclusion as compared to the rain was due to natural causes are millions to one.” Langmuir was evenmore enthusiastic about the consequences of silver iodide seeding over New Mexico. The explosive growth of a cumulonimbus cloud and the heavy rainfall near Albuquerque and Santa Fe were attributed to the direct results of ground-based silver iodide seeding. In fact Langmuir concluded that nearly all the rainfall that occurred over New Mexico on the dry ice seeding day and the silver iodide seeding day were the result of seeding.

The claim by Langmuir was found to be false in an analysis by the chief Weather Bureau meteorologist in Albuquerque, NM, Willis R. Gregg.

———————

Convinced that cloud seeding was a miraculous cure to all of nature’s evils, Langmuir and his colleagues carried out a trial seeding experiment of a hurricane with the hope of altering the course of the storm or reducing its intensity. On October 10, 1947, a hurricane was seeded off the east coast of the United States. About 102 kg of dry ice was dropped in clouds in the storm. Due to logistical reasons, the eye wall region and the dominate spiral band were not seeded. Observers interpreted visual observations of snow showers as evidence that seeding had some effect on cloud structure. Following seeding, the hurricane changed direction from a northeasterly to a westerly course, crossing the coast into Georgia. The change in course may have been a   was the result of the storm’sinteraction with the larger-scale flow field. Nonetheless, General Electric Corporation became the target of lawsuits for damage claims associated with the hurricane.

In summary, Project Cirrus launched the United States and much of the world into the age of cloud seeding. The impact of this project on the science of cloud seeding, cloud physics research, and the entire field of atmospheric science was similar to the effects of the launching of Sputnik on the United States aerospace industry.

This discussion lacks mention of perhaps the most influential paper of all those that motivated cloud seeding throughout the world; that of Kraus and Squires (1947) reporting spectacular results from an Australia seeding experiment.  The KS47 paper, appearing in the high-end journal, Science, purported that two drops of dry ice totaling 250 lbs. into a Cumulus congestus cloud at 23,000 feet spawned a massive, isolated storm that towered to possibly “40,000 feet,” lasted for hours and dropped heavy rains over “20 square miles.”  This was the only cloud that appeared to respond so impressively to dry ice seeding on that flight day.   The Kraus and Squires report was seen as evidence that drought might be alleviated with few hundred pounds of dry ice, and as a result,  widespread cloud seeding took off as entrepreneurs hastily formed cloud seeding companies such as North American Weather Consultants, Atmospherics, Inc., Irving P. Krick Associates, among many others.  The series of photographs of the apparent response of that Cumulus cloud to seeding continued to be published as proof what cloud seeding could do for almost 40 years after KS47 (e.g., Orville 1986). 

Caveat Emptor:

HOWEVER, in independent dry ice seeding tests on Cumulus clouds by the U. S. Weather Bureau (Coons et al. 1949, Coons and Gunn 1951) no explosion of a cloud occurred as KS47 had described after seeding.  Instead, they reported, the seeded Cumulus clouds generally sank back down after dropping up to 100 lbs. of dry ice into them.  Also, they reported that natural precipitation had formed in similar Cumulus clouds in the vicinity.  It wasn’t clear to Coons et al. that dry ice seeding had made a difference.

——————-

Chapter 2:  The glory years of weather modification

  • Introduction

The exploratory cloud seeding experiments performed by Langmuir, Schaefer, Kraus and Squires, and Project Cirrus personnel fueled a new era in weather modification research as well as basic research in the microphysics of precipitation processes, cloud dynamics, and small-scale weather systems, in general. At the same time commercial cloud seeding companies sprung up worldwide practicing the art of cloud seeding to enhance and suppress rainfall, dissipate fog, and decrease hail damage. Armed with only rudimentary knowledge of the physics of clouds and the meteorology of small- scale weather systems, these weather modification practitioners sought to alleviate all the symptoms of undesirable weather by prescribing cloud seeding medication. The prevailingview was “cloud seeding is good!”

  • The static mode of cloud seeding

We have seen that the pioneering experiments of Schaefer and Langmuir suggested that the introduction of dry ice or silver iodide into supercooled clouds could initiate a precipitation process. The underlying concept behind the static mode of cloud seeding is that natural clouds are deficient in ice nuclei.

2For an excellent,  more technical review of static seeding, see Silverman (1986).

———————

The rime-splinter secondary ice crystal production process may not explain all the observations of high ice crystal concentrations relative to ice nuclei estimates but it is consistent with many of them. Still other processes, such as drop fragmentation during freezing (Korolev et al. 2004, Rangno and Hobbs 2005) and fragmentation of delicate ice particles (e.g.,Vardiman 1978) are not well quantified understood at this time may be operating operate in some cases of observed high ice crystal concentrations relative to ice nuclei concentrations.

The implication of these physical studies is that the “window of opportunity” for precipitation enhancement by cloud seeding is much smaller than was originally thought. Clouds that are warm-based and maritime have a high natural potential for producing precipitation. On the other hand, clouds that are cold-based and continental have reduced natural potential for precipitation formation and, hence, the opportunity for precipitation is much greater, although the total water available would be less than in a warm-based cloud.

This is consistent with the results of field experiments testing the static seeding hypothesis. The Israeli I and II experiments were quite successful in producing positive yields of precipitation in seeded clouds (Gagin and Neumann, 1981). The clouds that were seeded over Israel had relatively cold bases(5-8°C) and were generally continental such that there was little evidence of a vigorous warm rain process or the presence of large quantities of heavily rimed graupel particles.

This paragraph was copied verbatim from the first edition of this book,  CP95.  This paragraph should not have been copied and pasted into CP07 because it was not even valid at the time of CP95.  For example, strong evidence of ice multiplication and warm rain processes that undercut the “ripe for seeding” Cumulus descriptions that made the statistical successes of the Israeli experiments so credible (e.g., Silverman 1986) had appeared in 1988 (Rangno).

CP07 (and CP 95) were not aware of, or chose also not to cite,  Gabriel and Rosenfeld (1990) which published the “crossover” result of seeding for Israeli II for the first time. Crossovers consist of combining the results of random seeding in two targets.  The crossover evaluation had been mandated by the Israeli Rain Committee prior to Israeli II (Silverman 2001).    The important result for Israeli II was -2% effect on rainfall, not statistically significant.    Thus, Israeli II had not replicated Israeli I, as also concluded by Rangno and Hobbs (1995), and Silverman (2001).  For comparison, the Israeli I crossover result had indicated a statistically significant 15% increase in rain (e.g., Wurtele 1971).

The null crossover result in Israeli II was due to apparent increases in rain due to seeding in the north target that were canceled out by indications of a whopping 15% decrease in rainfall on seeded days in the south target.  Numerous questions about the “ripe for seeding” clouds of Israel would have been raised had the results for the south target of Israeli II been reported in a “timely manner” and not hidden from view until 1990.

CP07 acknowledge some of the evidence against the Israeli seeding successes later in this chapter, but not all.  This is an improvement over CP95 that had not cited any counter evidence regarding those experiments.   However,  in CP07 the reader will get two interpretations of the same experiments in one book.

———

A number of observational and theoretical studies have also suggested that there is a cold temperature “window of opportunity” as well. Studies of both orographic and convective clouds have suggested that clouds colder than-25°C have sufficiently large concentrations of natural ice crystals that seeding can either have no effect or even reduce precipitation (Grant and Elliot, 1974; Gagin and Neumann, 1981; Gagin et al., 1985; Grant, 1986). It is possible that seeding such cold clouds could reduce precipitation by creating so many ice crystals that they compete for the limited supply of water vapor and result in numerous, slowly settling ice crystals which evaporate before reaching the ground. Such clouds are said to be overseeded.  

There are also indications that there is a warm temperature limit to seeding  effectiveness (Grant and Elliot, 1974; Gagin and Neumann, 1981; Cooper and Lawson, 1984). This is believed to be due to the low efficiency of ice crystal production by silver iodide at temperatures approaching -4 °C and to the slow rates of ice crystal vapor deposition growth at warm temperatures. Thus there appears to be a “temperature window” of about -10°C to -25°C where clouds respond favorably to seeding (i.e., exhibit seedability).

CP07 were not aware of, or chose not cite, the extensive literature that contradicted the claims of Grant and Elliott (1974) concerning a cloud top temperature range in which cloud seeding is supposedly viable. This led CP07 to “cut and paste from CP95 that there is a viable cloud seeding window for clouds (with tops) having a temperature range from -10°C to -25°C.  We note that CP07 do not use the term “cloud top” in this discussion, but that’s what the papers they reference are referring to, not just a temperature range within a cloud deck.

That a viable cloud top temperature seeding window of -10°C to -25°C exists as CP07 purport was dealt a severe blow in the Rockies by several papers in which high (10s to 100 per liter) concentrations of ice particles were reported in wintertime clouds with tops  >-25°C including even a contribution from Grant (leader of the Climax, CO, experiments) in Hobbs (1969).

Some of the overlooked papers are: Auer et al. (1969), Cooper and Vali (1981), Marwitz et al. 1976, Cooper and Marwitz 1980, and ground ice crystal concentration reports by Vardiman 1978, and by Vardiman and Hartzell (1976) in support of the Colorado River Basin Pilot Project, and by Grant et al.’s 1982 airborne study that reported no correlation with cloud top temperatures and ice particle concentrations in stable orographic clouds.   

So, the “window of opportunity” for cloud seeding was, at the time of CP95 and in CP07, known to be much more limited compared to what they were in their books.  I brought some of this counter evidence against this purported seeding window to the attention of the first author of CP07 in an email in 1997 to no avail.

There was also a serious drawback to the Grant and Elliott (1974)  study that CP95 and CP07 depended upon; they did not measure cloud top temperatures in the projects they evaluated.  Instead,  Grant and Elliott used constant pressure surfaces as proxies of cloud tops. The use of a constant pressure temperature was shown to be invalid as an index of cloud top temperatures on several occasions (Rangno 1972, 1986, Bartlett et al. 1975, Elliott et al. 1976, Hobbs and Rangno 1979, Mielke 1979, Hill 1980). These studies also went under the CP95 and CP07 “radar.”

There is a similar drawback to the Gagin and Neumann (1981) study; they measured radar tops, not cloud tops; the latter are higher, and their claim of having measured the top of “every cell” in Israeli II, was not true. It was impossible to see the tops of cells in the north end of the north target of Israeli II, nor even very close by when appreciable rain was falling on the Israel Meteorological Service’s 3-cm wavelength radar that Gagin and Neumann used for this purpose (personal communication, 1987, Mr. K. Rosner, the Israeli experiments’ chief meteorologist).  

—————–

Physical studies and inferences drawn from statistical seeding experiments suggest there exists a more limited window of opportunity for precipitation enhancement by the static mode of cloud seeding than originally thought. The window of opportunity for cloud seeding appears to be limited to:

  • clouds that are relatively cold-based and continental;
  • clouds having top temperatures in the range -10°C to -25°C;

The above sentence about cloud top temperatures is profoundly incorrect because neither in CP95 and in CP07 were the authors aware of, or chose not to cite, the many publications concerning wintertime ice in clouds that contradict the assertion that this temperature range presents a viable cloud seeding window.

  • a timescale limited by the availability of significant supercooled water before depletion by entrainment and natural precipitation

We must also recognize that implementing a seeding experiment or operational program that operates only in the above listed windows of opportunity is extremely difficult and costly. It means that in a field setting we must forecast the top temperatures of clouds to assure that they fall within the -10 – 5°C  to perhaps to -15°C  – 25°C  temperature window.

The temperature range above is adjusted to reflect the modern knowledge of ice in clouds in the Rockies and the improved AgI formulations that work more efficiently at higher temperatures.  However, at the higher cloud top temperatures in this range (-10°C to -15°C) in the high barriers of the Rockies the wintertime clouds tend to be too thin for appreciable modification potential.

In summary, the static mode of cloud seeding has been shown to cause the expected alterations in cloud microstructure including increased concentrations ofice crystals, reductions of supercooled liquid water content, and more rapid production of precipitation elements in both cumuli (Cooper and Lawson, 1984) and orographic clouds (Reynolds and Dennis, 1986; Reynolds, 1988; Super and Boe, 1988;Super and Heimbach, 1988; Super et al., 1988).

The documentation of increases in precipitation on the ground due to static seeding of cumuli, however, has been far more elusive with the Israeli  experiment (Gagin and Neumann, 1981) providing the strongest evidence that static seeding of cold-based, continental cumuli can cause significant increases of precipitation on the  ground.

The above statement shouldn’t have been copied and pasted from CP95 into CP07 considering the published contrary evidence available that was available prior to both editions.

The evidence that orographic clouds can cause significant increases in snowpackis  far more compelling, particularly in the more continental and cold-based orographic clouds  (Mielke et al., 1981; Super and Heimbach, 1988).

By citing Mielke et al. 1981, CP07 indicate a lack of awareness of the published literature regarding the experiments conducted at Climax, CO.  Mielke et al. 1981 stratified their results by 500 mb temperatures, which have no meaning for cloud properties as Mielke (1979) himself reported. For those of us who follow the cloud seeding literature, this was a bizarre occurrence in peer-reviewed literature; the official journal reviewers and journal editor who were responsible for this science oxymoron, take note.

A dark cloud (no pun intended) was cast on all of the Colorado State University cloud seeding reports when Rangno and Hobbs (1987) used independent data reduced by NOAA personnel to evaluate the Climax experiments precipitation and upper-level temperature.  CSU personnel had reduced the data in Climax II to speed reporting of its results.  But this was contrary to the prior statements made by the experimenters about these having been independently made measurements (Mielke 1995).  

Rangno and Hobbs (1987) found that the CSU errors created the replication of Climax I by Climax II .  Moreover,  Climax II’s early tainted success through it’s first two years (reported to the Bureau of Reclamation’s cloud seeding division in Grant et. al. 1969,  helped spur the decision by the BOR to fund the massive seven million dollar Colorado River Basin Pilot Project as well as provide CSU and their consultants with about $500,000 to design that experiment in June 1968.   The Climax II errors had a profound effect; Climax I had been virtually error-free.

Furthermore, Rhea (1983) uncited by CP 95 or by CP07,  showed that the optimistic result by Mielke et al. (1981) for Climax II was due to a mistiming of precipitation gauge readings between the target and the control gauges, and not due to cloud seeding.  Thus Climax II did not replicate Climax I as was widely believed.  (Rhea 1983 was published AFTER he made revisions to his paper as had been suggested by Grant et al. in a “Comment” and “Reply” journal exchange behind the scenes.  However, Grant et al. (1983) did not revise their original “Comment” after Rhea made his revisions, an act that misled readers when reading the published exchange in the journal.  Rhea, in a private communication to me in 1986 considered the Grant et al. “Reply” a “smokescreen.”

But even these conclusions have been brought into question. The Climax I and II wintertime orographic cloud seeding experiments (Grant and Mielke; 1967; Chappell et al., 1971; Mielke et al., 1971, 1981) are generally acknowledged by the scientific community (National Academy of Sciences, 1975 1973; Tukey et al., 1978) for providing the strongest evidence that seeding those clouds can significantly increase precipitation.

Nonetheless, Rangno and Hobbs (1987, 1993) question both the randomization techniques and the quality of data collected during those experiments.  They and concluded that the Climax II experiment failed to confirm that precipitation can be increased by cloud seeding in the Colorado Rockies when the NOAA-published precipitation and upper level data for the Climax II experiment was used to evaluate it. Even so, Rangno and Hobbs(1987) did show that precipitation may have been increased by about 10%in the combined Climax I and II experiments

CP07 did not read Rangno and Hobbs (1993),  The 10% increase in snow  CP07 assume occurred was due to Grant and Mielke (1967) building in a huge seeding effect in Climax I in the high 500 mb temperature storm category via the choice of controls mid-way through Climax I.  This initial act caused the entire Climax experiments to suggest an ersatz 10% increase in snow due to seeding in the high 500 mb temperature category.Moreover, the 10% was not statistically significant via 1000 re-randomizations of the combined experiments CP07 refer (I. Gorodnoskya, personal communication, University of Washington Academic Computing Center, 1987, unpublished result).

Once the controls were hard-wired, no further indications of a seeding effect occurred as can be seen in the diagrams below from Rangno and Hobbs (1993).  One can assume that Grant and Mielke were sincere in their belief that a large cloud seeding induced increase in snowfall was being produced at Climax when they chose their controls at the halfway point, but had they realized that it had ended after their choices, the story of Climax I would have turned out far differently.

should be compared, however, to the original analyses by Grant et al.(1969) and Mielke et al.(1970, 1971)which indicated greater than 100% increase in precipitation on seeded days in the high 500 mb temperature category for Climax I and 24% for Climax II. Subsequently, Mielke (1995) explained a number of the criticisms made by Rangno and Hobbs regarding the statistical design of the experiments, including revealing that CSU personnel, and not independent NOAA ones,  as had been claimed on several occasions, were responsible for the errors in the precipitation and upper- level data that created a false replication of Climax I, in particular the randomization procedures, the quality and selection of target and control data, and the use of 500 mb temperature as a partitioning criteria. It is clear that the design, implementation, and analysis of this experiment was a learning process not only for meteorologists but statisticians as well.

PS to the reader: It was not a learning process for the CSU experimenters as claimed above.

Professor Grant was informed in my presence by three different people (I was not one of them) on three occasions in the early 1970s while I was the Assistant Project forecaster for the CRBPP that the stratifications by 500 mb temperatures by he and his group did NOT index cloud top ones as he was claiming.   These refutations of his claims were based on the statements of the prior Park Range Project contractor in Rhea et al. (1969),  and on the rawinsonde data from the on-going Colorado River Basin Pilot Project (e.g., Rangno 1972, Elliott et al. 1976).  500 mb and cloud top temperatures are, in general, poorly correlated.

So, Grant stopped claiming they were strongly related after he received this information in the early 1970s and learned from it?

 No.

 Grant continued to claim (as in Grant and Elliott 1974, Grant and Cotton 1979, Grant 1986) that the 500 mb temperature was representative of cloud top temperature (see Table 8 in Grant and Elliott 1974).   Strangely believe it, Mielke et al. with Grant as a co-author (1981) again stratified results of seeding in Climax I and II by 500 mb temperatures which Mielke himself knew had no physical meaning re cloud tops or cloud microstructure!

Moreover, the CSU experimenters repeatedly and falsely claimed that a graduate student, Furman (1967), had established a relationship between 500 mb and cloud top temperatures (e.g., as in Grant and Elliott 1974). Furman (1967) says nothing about such a relationship in his master’s thesis that consisted of but three days of vertically pointed 3-cm wavelength radar at Climax (Hobbs and Rangno 1979).  Another CSU graduate student, Hjermstad (1970), to refer to Furman’s study as, “scant” in coverage.  

To the outside community, the experimenters were presenting quite a different picture of what Furman had done.  What do we make of this?

For a naive, idealistic newbie into the weather modification/cloud seeding scene like me in the early 1970s in Durango, CO, this was amazing and troubling stuff to experience! CP07 (CSU folk) try to minimize what happened, I think,  by claiming it was a “learning process” when what actually happened was so counter to what we think of as “science”; i. e., that scientists change their minds when new facts come in that contradict their hypotheses.

The results of the many reanalyses of the Climax I and II experiments have clearly “watered down” the overall magnitude of the possible increases in precipitation in wintertime orographic clouds. Furthermore, they have  revealed that many of the concepts that were the basis of the experiments are far too simplified compared to what we know today. Furthermore, many of thecloud systems seeded were not simple “blanket-type orographic clouds” but were part of major wintertime cyclonic storms that pass through the region.As such, there was a greater opportunity for ice multiplication processes and riming processes to be operative in those storms, making them less susceptible to cloud seeding.

The above is a good summary.

 Two other randomized orographic cloud seeding experiments, the Lake Almanor Experiment (Mooney and Lunn, 1969) and the Bridger Range Experiment (BRE) as reported by Super and Heimbach (1983) and Super (1986) suggested positive results. However,these particular experiments used high-elevation silver iodide generators, which increases the chance that the silver iodide plumes get into the supercooled clouds.  Moreover, both experiments provided physical measurements that support the statistical results (Super, 1974; Super and Heimbach, 1983, 1988). Using trace chemistry analysis of snowfall for the Lake Almanor project, Warburton et al.(1995a) found particularly good agreement with earlier statistical suggestions of seeding-induced snowfall enhancement with cold westerly flow. They concluded that failure to produce positive statistical results with southerly flow cases was likely related to seeding mis-targeting of the seeded material.

The reader should be aware that the results of the second randomized Lake Almanor experiment were not fully reported. The effect of seeding in the so-called “cold westerly” cases where a large seeding effect was suggested in the first Lake Almanor experiment, was omitted in the analyses of the second experiment (Bartlett et al. 1975).

Omittted results are always a sign of concern as happened in the Israeli II experiment.  Also of concern, no one has reanalyzed the first Lake Almanor experiment with its overly large percentage increases in snow, also of “concern.”  They don’t seem realistic to me, an expert in ersatz seeding reports and in cloud microstructure.  Someone gimmee that list of random decisions for Lake Amanor I and I’ll check it out!

These two randomized experiments strongly suggest that higher-elevation seeding in mountainous terrain can produce meaningful seasonal snowfall increase.

Independent scrutiny is needed for both of those experiments to strengthen this conclusion.

We noted above, that the strongest evidence of significant precipitation increases by static seeding of cumulus clouds came appeared to come from the Israeli I and II experiments…until Gabriel and Rosenfeld (1990) reported the full results of Israel II.  

Rosenfeld and Farbstein(1992) suggested that the differences in seeding effects between the north and south target areas during Israeli II that were reported by Gabriel and Rosenfeld (1990) is was the result of the incursion of desert dust into the cloud systems. They argue that the desert dust contains more active natural ice nuclei and that they can also serve as coalescence embryos enhancing collision and coalescence among droplets. Together, the dust can make the clouds more efficient rain-producers and less amenable to cloud seeding.

Note:  This “divergent effects” hypothesis began to gain early traction in the scientific community (e.g., J. Simpson, 1989).

Even these experiments have come under attack by Rangno and Hobbs doubted the Rosenfeld and Farbstein (1992) claims, and he launched a reanalysis of both Israeli experiments in 1992 that was published in 1995 (Rangno and Hobbs). That publication drew numerous critical comments from seeding partisans in 1997   From their reanalysis of both the Israeli I and II experiments, they Rangno and Hobbs argued demonstrated that the appearance of seeding-caused increases in rainfall in the Israeli I experiment was due to “lucky draws” or a Type I statistical error as had first  been “red flagged” in Wurtele (1971) for Israeli I due to the highest statistical significance on seeded days in that experiment having been located in a Buffer Zone that was meant to be unseeded between the two targets.  That it was largely unseeded was stated by the Israeli I chief meteorologist in Wurtele’s paper, Mr. Karl Rosner.  Wurtele’s paper should have been cited in CP95 and CP07.

Gabriel and Rosenfeld (1990) and  Furthermore, they Rangno and Hobbs argued showed that during Israeli II, naturally heavy rainfall fell over a wide region that included both targets on north target seeded days, with Rangno and Hobbs expanding the analysis of Gabriel and Rosenfeld (1990) to  include Lebanon and Jordan.  The widespread heavier rainfall on north target seeded days gave the appearance that seeding caused increases in rainfall over the north target area, but since the seeded days in the north were the control days for the south target  and more ordinary storms happened in the south target on its seeded days, created the impression that seeding had decreased rainfall there.   Namely, the presence of “dust/haze” as claimed by Rosenfeld and Farbstein (1992) had nothing to do with the outcome of the Israeli II experiment as evaluated by Rangno and Hobbs (1995).  The lower natural rainfall in the region  encompassing the south target area gave the appearance that seeding decreased rainfall over that target area:  

Not cited by CP07 in this segment is Silverman (2001) in his major review of numerous static glaciogenic seeding experiments, that included the Israeli experiments.  He concluded, as did Rangno and Hobbs (1995), that the two Israeli experiments no longer were credible in proving that rain had been increased by cloud seeding.

We argued above that the “apparent” success of the Israeli seeding experiments was due to the fact that they are more susceptible to precipitation enhancementby cloud seeding. This is because numerous studies (Gagin, 1971, 1975, 1986; Gagin and Neumann, 1974) have had shown that the clouds over Israel are continental having cloud droplet concentrations of about 1,000 cm-3 and that ice particle concentrations are generally small until cloud top temperatures are colder· than-14°C. Furthermore, there is was little evidence found in those early studies for ice particle multiplication processes operating in those clouds.

See Rangno and Hobbs (1988) for a critique of those early studies by Professor Gagin listed above and why they were unrepresentative of most Israeli clouds.  Also see Rangno (1988) for evidence that those early studies were, indeed, highly erroneous as was verified on numerous occasions in later Israeli cloud studies using aircraft (e.g., Levin et al. 1996) and satellite data.  

Rangno (1988) and Rangno and Hobbs (1995) also reported on observations of clouds over Israel that strongly suggested containing they contain large supercooled droplets and quite high ice crystal concentrations at relatively warm temperatures. In addition, Levin et al.(1996) corroborated the Rangno (1988) and Rangno and Hobbs (1988, 1995) inferences when they found high ice particle concentrations, 10s to hundreds per liter, in convective clouds with tops no colder than -13°C.  presented evidence of active ice multiplication processes in Israeliclouds. This further erodes the perception that the clouds over Israel were as susceptible to seeding as originally thought.

Naturally, the Rangno and Hobbs (1995) paper generated quite a large reaction in the weather modification community. The March issue of the Journal of Applied Meteorology contained a series of comments and replies related to their paper (Ben- Zvi, 1997; Dennis and Orville, 1997; Rangno and Hobbs, 1997a,b,c,d, e, the most important of those “Replies”; Rosenfeld, 1997; Woodley, 1997). These comments and responses clarify many of the issues raised by Rangno and Hobbs (1995). Nonetheless, the image of, what was originally thought of as the best example of the potential for precipitation enhancement of cumulus clouds by static seeding has become considerably tarnished.

What have we learned from this chapter?  Caveat emptor concerning reports by those who conducted a “successful” cloud seeding experiments later telling us how ripe with seeding potential those clouds were.

Amen.  Thanks, guys, for this concluding remark largely due to the present writer’s work and skepticism.  This conclusion should have been placed earlier so the reader is not getting two versions of the of the Israeli experiments in having increased rain.

Chapter 3:  The fall of the funding science of weather modificationby cloud seeding

For nearly two decades vigorous research in weather modification was carried out in the United States and elsewhere. As shown in Fig. 3.1, federalfunding in the United States for weather modification research peaked in the middle 1970s at nearly $19 million per year. Even at its peak, funding for weather modification research was only 6% of the total federal spending in atmospheric research (Changnon and Lambright, 1987) and this amount includedconsiderable support for basic research on the physics of clouds and oftropical cyclones. Nonetheless, research funding in cloud physics, cloud dynamics, and mesoscale meteorology was largely justified based on its application to development of the technology of weather modification.Research on the basic microphysics of clouds particularly benefited fromthe political and social support for weather modification.   •

By 1980, the funding levels in weather modification research began to fall appreciably and by 1985 they had fallen to the level of $12 million. After 1985, funding in weather modification research became so small and fragmented that no federal agency kept track of it. Currently the Bureau of Reclamation has onlyabout

$0.25 million per year that can be identified as weather modification. They have operated a program in Thailand that was supported by the Agency for International Development. Basic research in the National Science Foundation that can be linked to weather modification is on the order of $1 million. Likewise, the Department of Commerce has no budgeted weather modification program but has supported a cooperative state/federal program at about the $3.5 million level. This on again- off again “pork barrel” program is supported by congressional write-insrather than a line item in the National Oceanic and Atmospheric Administration (NOAA) budget. In FY-2003, the Bureau of Reclamation administered this program,but no such funds were earmarked for either the Bureau of Reclamation or NOAA inFY-2004 or FY-2005. In this program, states having strong political lobbying support for weather modification are earmarked for support in this program.Overall the total federal program for weather modification in the United Statesis on the order of 10% of its peak level in the middle 1970s. What caused this virtual crash in weather modification research?

Changnon and Lambright (1987) listed the following reasons for this reduction in funding:

  • poor experimental designs;

Changnon and Lambright, as did CP95 and CP07, did not discuss the Bureau of Reclamation’s Colorado River Basin Pilot Project, the nation’s largest, best-planned, and costliest ever randomized orographic cloud seeding experiment based on the work of CSU cloud seeders. The surviving author, Lambright, did not remember why in his reply to a recent email query by this writer.

  • widespread use of uncertain modification techniques;
  • inadequate management of projects;
  • unsubstantiated Faulty claims of success, published in the peer-reviewed literature, ones that should have been caught in the peer-review of manuscripts.  

The “fall” described by CP95 and again in CP07 didn’t have to happen because with solid reviews; there would have been no rise!  If you would like to read about how to stop faulty cloud seeding claims from appearing in the peer-reviewed literature, go here:

https://cloud-maven.com/cloud-seeding-and-the-journal-barriers-to-faulty-claims-closing-the-gaps/

  • inadequate project funding; and
  • wasteful expenditures

Changnon and Lambright concluded that the primary cause of the rapid decline in weather modification funding was the lack of a coordinated federal research program in weather modification. However, there are other factors that also must

  • weather modification was oversold to the scientific community, public and legislatures due to peer-reviewed literature that appeared to show that cloud seeding had worked;
  • demands for water resource enhancement declined due to an abnormal wet period;

 

Clearly there is a great need to establish a more credible, stably funded scientific program in weather modification research, one that emphasizes the need to establish the physical basis of cloud seeding rather than just a”black box” assessment of whether or not seeding increased precipitation. We need to establish the complete hypothesized physical chain of responses to seeding by observational experiments and numerical simulations. We also needto assess the total physical, biological, and social impacts of cloud seeding, or what we call taking a holistic approach to examining the impacts of cloud seeding similar to those conducted during the latter stages of the Colorado River Basin Pilot Project (e.g., Marwitz et al. 1976).  E.K. Bigg, for example (Bigg, 1988, 1990b; Bigg and Turton,1988) suggested that silver iodide seeding can trigger biogenic production ofsecondary ice nuclei. His research suggests that fields sprayed with silveriodide release secondary ice nuclei particles at 10-day intervals and thatsuch releases could account for inferred increases in precipitation 1-3 weeksfollowing seeding in several seeding projects( e.g., Bigg and Turton, 1988).If Bigg’s hypothesis is verified, an implication of biogenic production ofsecondary ice nuclei is that many seeding experiments have thus been contaminated such that the statistical results of seeding are degraded. This effect would be worst in randomized cross-over designs and in experiments inwhich one target area is used and seed days and non-seed days are selectedover the same area on a randomized basis. Thus, not only is the weathermodification community faced with very difficult physical problems and largenatural variability of the meteorology, but they also are faced with thepossibility of responses to seeding through biological processes. (Bigg’s work is not credible to this reviewer.)

We shall see later that scientists dealing with human impacts on global change are also faced with very difficult physical problems, large natural variability of climate, and the possibility of complicated feedbacks through the biosphere. There is also a great deal of overselling of what models candeliver in terms of “prediction” of human impacts over timescales of decades or centuries.

End of “review and enhancement” of CP07’s weather modification chapters.

———–We interrupt this review for a brief personal presentation———

My self-funded trip to Israel (Rangno 1988) was to expose what I thought were faulty, ripe for cloud seeding cloud reports that were the foundation for the belief that seeding had increased rain.   My findings were first confirmed by Levin (1992), reported again in the journals by Levin et al. (1996) and verified in ensuing years several times in satellite imagery and in other airborne measurements.  Spiking fubball here, of course.  How often do researchers go to another’s lab on their own expense and tell him, “I don’t believe your results? Show them to me.”  Cost me a lot of money, but it was worth it.  At the time I went, the Israeli cloud reports had gone unquestioned (e.g., Silverman 1986).

Just before I hopped on a plane to Israel, my lab chief, Professor Peter V. Hobbs described me as “arrogant” for thinking I knew “more about the clouds of Israel than those who studied them in their backyard.”  But when he submitted my paper to the Quart. J. Roy. Meteor. Soc., 12 January 1987, with a copy to Professor A. Gagin, Professor Hobbs wrote to  Gagin that what I was describing  in my paper was the same as he thought about the clouds of Israel (that they were not as Professor Gagin was describing them).  

Professor Hobbs was not being truthful.  I often wonder many times Professor Hobbs might have said that to others, that what I  was reporting was what he had thought all along, robbing me of my insight, my historical trip and year long effort all paid for from my savings.  When I confronted him about this, he sent me a memo that said not to expect a job in his group in the future.  

But, he did hire me back to the job I loved via the magic of reconciliation (mostly) over past wrongs!

———————– 

The references cited in this “Review and Enhancement” that do not appear in CP07:

Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystalsand ice nuclei observations in stable cap clouds. J. Atmos. Sci., 26, 1342-1343.

Bartlett, J. P., Mooney, M. L., and Scott, W. L., 1975:  Lake Almanor Cloud Seeding Program.  Special Regional Weather Modification Conference, San Francisco, CA, 106-111.

Coons, R. D., and R. Gunn, 1951:  Relation of artificial cloud-modification to the production of precipitation.  Compendium of Meteorology,  Amer. Meteor. Soc., Boston, MA. 235-241. 

Coons, R. D., E. L. Jones, and R. Gunn, 1949: Artificial production of precipitation. Third Partial Report: Orographic Stratiform Clouds–California, 1949. Fourth Partial Report: Cumuliform Clouds–Gulf States, 1949. U. S. Weather Bureau Res. Paper No. 33, Government Printing Office, Washington, 46 pp.

Gabriel, K. R., and D. Rosenfeld: The second Israeli rainfall stimulation experiment: analysis of rainfall on both target areas. J. Appl. Meteor., 29, 1055–1067, 1990.

Cooper, W. A., and J. D. Marwitz, 1980: Winter storms over the San Juan mountains. Part III. Seeding potential. J. Appl. Meteor., 19, 942-949.

Cooper, W. A., and G. Vali, 1981: The origin of ice in mountain cap clouds.J. Atmos. Sci., 38, 1244-1259.

Furman, R. W., 1967:  Radar characteristics of wintertime storms in the Colorado Rockies.  M. S. thesis, Colorado State University, 40pp

Grant, L. O., DeMott, P. J., and R. M. Rauber, 1982: An inventory of icecrystal concentrations in a series of stable orographic storms. Preprints, Conf. Cloud Phys., Chicago, Amer. Meteor. Soc. Boston, MA. 584- 587.

Grant, L. O., J. G. Medina, and P. W. Mielke, Jr.,  1983: Reply to Rhea 1983.   J. Appl. Meteor. and Climate, 22, 1482-1484.

Grant, L. O., Chappell, C. F., Crow, L. W., Mielke, P. W., Jr., Rasmussen, J. L., Shobe, W. E., Stockwell, H., and R. A. Wykstra, 1969:  An operational adaptation program of weather modification for the Colorado River basin.  Interim report to the Bureau of Reclamation, Department of Atmospheric Sciences, Colorado State University, Fort Collins, 98pp.

Hill, G. E., 1980: Reexamination of cloud-top temperatures used as criteria of cloud seeding effects in experiments on winter orographic clouds. J. Climate Appl. Meteor., 19, 1167-1175.

Hobbs, P. V., 1969: Ice multiplication in clouds. J. Atmos. Sci., 26, 315-318.

Hobbs, P. V., and Rangno, A. L., 1979: Comments on the Climax randomized cloud seeding experiments.  J. Appl. Meteor., 18, 1233-1237.

Hobbs, P. V., Lyons, J. H., Locatelli, J. D., Biswas, K. R., Radke, L. F., Weiss, R. W., Sr., and A. L. Rangno, 1981: Radar detection of cloud-seeding effects. Science, 213, 1250-1252.

Korolev, A. V., M. P. Bailey, J. Hallett, and G. A. Isaac, and, 2004:Laboratory and in situ observation of deposition growth of frozen drops. J. Appl. Meteor., 43, 612-622.

Kraus, E. B., and P. Squires, 1947: Experiments on the stimulation of clouds to produce rain. Nature, 159, 489-490.

Levin, Z., 1992: The role of large aerosols in the precipitation of the eastern Mediterranean. Paper presented at theWorkshop on Cloud Microphysics and Applications to Global Change, Toronto. (Available from Dept. Atmos. Sci., University of Tel Aviv). No doi available

Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean.  J. Appl. Meteor., 35, 1511-1523.

Marwitz, J. D., Cooper, W. A., and C. P. R. Saunders, 1976: Structure and seedability of San Juan storms. Final Report to the Bureau of Reclamation,University of Wyoming, Laramie, WY, 324 pp.*

Rangno, A. L., 1972: Case study on some characteristics of the specially monitored storm episodes within the Colorado River Basin Pilot Project. Special Project Report to the Bureau of Reclamation, 105pp.

Rangno, A. L., 1988: Rain from clouds with tops warmer than -10 C in Israel. Quart J. Roy. Meteorol. Soc., 114, 495-513.

Rangno, A. L., and P. V. Hobbs, 1988: Criteria for the development of significant concentrations of ice particles in cumulus clouds. Atmos. Res., 22, 1-13.

Rangno, A. L., and P. V. Hobbs, 1997e: Comprehensive Reply to Rosenfeld, Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25pp .https://carg.atmos.washington.edu/sys/research/archive/1997_comments_seeding.pdf

Rangno, A. L., and P. V. Hobbs, 2005: Microstructures and precipitation development in cumulus and small cumulonimbus clouds over the warm pool of the tropical Pacific Ocean. Quart. J. Roy. Meteorol. Soc., 131, 639-673.

Rhea, J. O., 1983: “Comments on ‘A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments. J. Climate Appl. Meteor., 22, 1475-1481.

Simpson, J., 1989:  Amer. Meteor. Soc. Banquet talk transcript on the occasion of her inauguration as president of that organization, October 4th.

Vardiman, L., 1978: The generation of secondary ice particles in cloudcrystal-crystal collisions. J.  Atmos. Sci., 35, 2168–2180.

Vardiman, L., and C. L. Hartzell, 1976: Investigation of precipitating ice crystals from natural and seeded winter orographic clouds. Final Report to the Bureau of Reclamation, Western Scientific Services, Inc., 129 pp.

Wurtele, Z. S., 1971: Analysis of the Israeli cloud seeding experiment by means of concomitant meteorological variables. J. Appl. Meteor., 10, 1185-1192.

Concluding remark:

The entire CP07 reference list, consisting of several hundred references, is  a great resource for research and demonstrated how knowledgable these two authors are.  However, the list above also indicates how difficult a review of a topic is when the amount of literature that appears in journals today can bury you with important citations being missed.

Review and Enhancement of the Cloud Seeding Portion of the 1995 book, “Human Impacts on Climate and Weather”

I received a copy of this book in 1997 and went into a completely objective tantrum when I read the chapters on weather modification/cloud seeding.  Here’s my unedited 1997 letter to one the authors, with, as usual, candid material and why I was upset.  And, why wasn’t I asked to review this portion of their book?  I coulda improved it.  Still, I highly recommend this book overall.  It is likely that the first author is responsible for the cloud seeding portion of this book.

1997 2-16-18 Cotton, to, critique of his book with Pielke_emotions in cloud seeding_ocr

The comments embedded in this article in red font is NOT a hindsight view, but comments that were appropriate at the time this book was submitted/published with the relevant and available missing citations listed.

https://cloud-maven.com/wp-content/uploads/2024/12/Review-and-Enhancement-of-CP95-Human-Impacts-cloud-seeding-discussions-1.pdf

Sincerely,

Art

PS:  This has been made more difficult since in the intervening 30 odd years, I have become social friends with the two authors.  What to do? Nothing, or go forward?

PPS:  It will be interesting to see if CP95 carried out my admonishments in CP2007, the second edition of Human Impacts on Climate and Weather.  Standby.

Review and Enhancement of a 1979 Review of Weather Modification

Oh, yeah, baby!  1979!  The Sex Pistols with Johnny Rotten and punk bands like Black Flag were on the rise! 

My belated review of “Weather Modification” has to be done, IMO:  i.e., corrections and comments, to complete a peer-reviewed article that was published in the journal, Reviews of Geophysics and Space Physics, using literature available to the authors at the time of the article was submitted/published that they omitted or didn’t know about.  

As an aside, omitting stuff happens a LOT in the domain of “weather modification/cloud seeding.”  A recent example, to go into a minor rant, was in the peer-reviewed article by Benjamini et al. 2023 (J. Appl. Meteor. and Climate)  who reported a null result of randomized cloud seeding in Israel.  Benjamini et al.  could not bring themselves to cite my 1995 article with Prof. Peter V. Hobbs (same journal), that concluded cloud seeding increases previously reported by Israeli scientists at the Hebrew University of Jerusalem were illusory.  Thus, there was no reason to think cloud seeding would work in another randomized experiment.  Sure, it’s painful for them to cite my work, but still….same old same old; omit, omit, omit.  Science is not always what you think it should be!

As an expert in some elements that are addressed in the 1979  article, I am happy to be able to improve and clarify it for readers of historic material, should they find it,  before the Grim Reaper drops by.  Here is the full article, which overall is quite good, except for those areas I am intimately familiar with:

A review and enhancement of the “weather modification” review by Grant and Cotton_1979_one column

I am quite candid about WHY I am doing a series of these “reviews and enhancements” of historic material as you will read above.  I tend to get carried away, and so all the minutiae I discuss might be “painful,” too.  I do my best, though.

Sincerely,

Art

A Review and Enhancement of “A Critical Assessment of Glaciogenic Seeding of Convective Clouds for Rainfall Enhancement”

I submitted a long “review and enhancement” on this article by Dr. Bernard A. Silverman’s 2001 massive (14,000 word) review article in the Bulletin of the American Meteorological Society (BAMS) in March 2002.  My “Comments” were too long, the Bulletin editor said, and so it never even went to peer review.  And, he was right, it was too long.

Silverman’s long review article is here.  It’s well worth reading and there is much we agreed on in those days,  if anyone cares:

2001 Silverman Critical assessment 2001ocr

Most of my “review and enhancement” of Silverman’s excellent, unbiased article despite his pro-cloud seeding stance, concerns the Israeli clouds and cloud seeding experiments.  I am an expert in that domain, having spent 11 weeks in Israel in 1986 studying their clouds, rain and sounding data with the full cooperation of the Israel Meteorological Service.  The ensuing article was published in the J. Roy. Meteor. Soc. in 1988.  The gist of it:  the clouds of Israel were not being described correctly by the leaders of cloud the seeding experiments at the Hebrew University of Jerusalem.  They described them as plump with cloud seeding potential when they were not.

In the early 1990s,  I re-analyzed the Israel-1 and Israel-2 randomized experiments along with my co-author, Peter V. Hobbs, director of the Cloud and Aerosol Research Group at the University of Washington, Seattle.  The article, which concluded that there had been no cloud seeding induced increases in rain in these experiments,  was published in the J. Appl. Meteor. in 1995.  Several cloud seeding-centric scientists commented on that paper in 1997 along with our “Replies.”

When I saw Dr. Silverman’s 2001 article and that he had misdescribed some of my own work, I went into a controlled rage of objectivity (haha),  as scientists do from time to time,  and decided to write a “Comment.”  But, as I added more and more material, my  “Comment” became an article in itself, even a “novella” of sorts.    Eventually those 2002  “Comments” led to a full blown article:  “The Rise and Fall of Cloud Seeding in Israel,” that manuscript submitted in 2017 and rejected by BAMS in 2019 (J. R. Fleming, private communication) after two split reviews.  BAMS did not allow me to respond to the comments of the two reviewers or revise my manuscript.

Well, after all these years, I just re-read my critique of Silverman’s 2001 article and thought it had some merit for those of you interested in 1) cloud seeding, 2) Israel.    So, here it is, as it was submitted with a couple of minor corrections and an update.  Caution:  the subject of scientific misconduct is broached. That didn’t help me in 2002, either, but I’ve left it in anyway.

———————————————————————

  1. Introduction

Silverman (2001, hereafter S01) is to be commended for attempting the prodigious task of making sense of all of the randomized cloud seeding experiments targeting cumuliform clouds during the past 40 years.  In large measure he has succeeded and made a significant contribution to the field of weather modification.  Still, some comments and clarifications are needed .

In his historical overview of cloud seeding, S01 should have mentioned the great effort that an independent agency, the U. S. Weather Bureau (USWB), made in attempting to replicate the early and often spectacular claims of seeding successes that began to appear in the late 1940s (e.g., Kraus and Squires 1947).  The USWB (i.e., Coons et al. 1949; Coons and Gunn 1951) seeded dozens of summertime cumuliform clouds in Ohio and along the U. S. Gulf Coast that were similar to clouds in several of the projects examined by S01 with up to “60 lbs of dry ice per mile.”

They found no evidence of any particular seeding effect.

On the contrary, USWB observers found that the turrets usually dissipated or settled back in altitude after they had been seeded.

The USWB scientists also made an unexpected and important discovery: ice was already forming in clouds with tops as warm as –6°C before they had seeded them.  The occurrence of ice was at far higher temperatures than was expected from ground ice nucleus concentration measurements on which seeding hypotheses were based.  Those ground measurements suggested that ice would not form until clouds reached temperatures of –15° to –20°C.  This stunning USWB observation was to be confirmed in more sophisticated aircraft measurements more than ten years later in Missouri during Project Whitetop (Koenig 1963).

The USWB’s independent seeding trials that showed little evidence of seeding having affected rain on the ground, crude as it was, stands tall today relative to the same conclusions about the seeding of cumulus clouds reached by S01 50 years later.

  1. Why weren’t seeding effects produced in the projects reviewed?

One would think that we know how to seed clouds successfully with indisputable scientific evidence for more rain on the ground after more than 50 years of attempting to do so.  However, the production of seeding effects in rainfall on the ground have been preempted by three crucial cloud factors, particularly so in the projects examined by S01:  1) Due to the relatively warm cloud bases in the projects he examined, natural ice forms in, or can be expected to form, in the targeted clouds either within or soon after their summits ascend above –5° to –10°C, the temperature range where seeding might take place; 2) the formation of ice crystals is vastly increased in the temperature range of –2.5° to –8°C in clouds with warm bases once ice has formed due to an explosion of ice splinters and fragments caused by secondary ice-forming mechanisms associated with large drops; and 3) perhaps most surprising to the Bulletin reader: we don’t yet know what the true concentrations of ice particles are in clouds today due to past instrument limitations that have only recently been overcome.

Today’s knowledge concerning ice in clouds has been limited because of our inability to reliably measure ice crystals smaller than about 100 mm in maximum dimension.  Thus, published concentrations, even as high as they have been, have had to necessarily omit the contribution of very small ice crystals to the total in the cumulus clouds that have been sampled (e.g., Koenig 1963; Rangno and Hobbs 1991, 1994; Levin et al. 1996).  Early measurements with a new probe capable of measuring these small ice crystals suggest that the total ice crystal concentrations in clouds will be several times higher than previously thought (e.g., Lawson and Jenson 1998).  Hence we are once again on the verge of learning what the USWB did more than 50 years ago: there is more natural ice in clouds than we imagined.

Therefore, the seeding experiments discussed by S01 were, in a sense, premature since the experimenters had made, and perhaps unavoidably, erroneously low estimates of the amount of natural ice that formed in clouds.  In essence, they were pouring water into a river without knowing whether there was a flood already in progress.

This fact has been demonstrated by Stith et al. (2002) who found little liquid water in tropical cumuli above the –12°C level and but “traces” of liquid water by –18°C.  The clouds studied by Stith et al. represent the kinds of clouds seeded in several of the projects reassessed by S01, those in tropical regions with warm cloud bases and moderate updrafts.  The liquid water in the clouds studied by Stith et al. had been consumed by the explosive natural ice formation taking place in rising turrets at temperatures before they reached the –12°C level and that were glaciated by –18°C.

  1. Project Whitetop

 Project Whitetop (Braham 1979) still remains as one of the most important, enigmatic, and well designed of all the randomized cloud seeding experiments carried out to this day and it was surprising that it was not mentioned by S01.  It was worthy of discussion because of its design and results, and because of the seeding method employed, which probably constituted its only major design flaw.

  1. What made Project Whitetop so special?

Project Whitetop had the three critical attributes that characterize sound experimental design:  the experiment was 1) randomized, 2) the target area and the specific rain gauges for evaluation purposes were identified before the experiment began, and 3) the results were evaluated contractually by those removed from the conduct of the experiment, the institution carrying it out, and the evaluators had no vested interests in cloud seeding.[1]  The importance of these attributes in the conduct and evaluation of cloud seeding experiments cannot be overemphasized.  We do not know from S01 which, if any of his reviewed experiments, had these essential design attributes.

Project Whitetop stirred great interest and controversy when the initial analyses following its conclusion suggested strong decreases in rainfall had been produced by cloud seeding over a wide area (e.g., Lovasich et al. 1969).  Later analyses, however, found that rain was also less on seeded days over wide areas upwind of the seeding line as well and subsequently, most scientists now believe that the random draw was uneven and produced a false negative (Type II statistical error or “unlucky draw”) and seeding actually produced a null result overall (Braham 1979).

What went wrong in Project Whitetop?  First, just as the USWB scientists had found in similar clouds more than 10 years earlier, natural ice was forming in the Project Whitetop clouds at shockingly high cloud top temperatures, between –5° and –10°C, and clouds glaciated (turned completely to ice) with great rapidity (Koenig 1963; Braham 1964). Without doubt,  “ice multiplication” as this phenomenon was later dubbed by Hobbs (1969), seriously compromised the chances of creating more rain on the ground through cloud seeding.  This is because the purpose of the seeding was to create more ice in clouds that were (erroneously) believed by the experimenters to have little ice.

The warm-based Missouri clouds, like those projects in tropical settings discussed by S01, and also like those in Israel, produce copious quantities of large drops (>23 mm diameter) and even precipitation-sized drops (>200 mm diameter) as they ascend past the freezing level, making them ultra-ripe for the onset of various natural ice multiplication mechanisms (e.g., Hallet and Mossop 1974; Mossop 1985; Hobbs and Alkezweeny 1968).  In themselves, these mechanisms can produce effects similar to those produced by cloud seeding (Rangno and Hobbs 1991, 1994).

  1. Were the clouds seeded effectively in the experiments reviewed?

Again, Project Whitetop has something to say about the projects assessed by S01.  Project Whitetop had, in retrospect, a key design flaw: the seeding method used. Instead of injecting the seeding agent into updraft regions of clouds upwind or over the target as would be done today, the three aircraft used in this experiment dispensed it in lines about 50-km long upwind of the target at a height that was just below the bases of the cumulus clouds that might have been forming in the area.  Suitable cumulus clouds (building ones with, or about to have supercooled tops) with updrafts above the aircraft as they dispensed silver iodide was not a criterion for releasing the seeding agent in Project Whitetop.

Whether the silver iodide released by the aircraft in Project Whitetop ever got into suitable clouds, whether it did so at the right locations upwind or in the target, and in what concentrations if it did, was never established.  In fact, the “patrol” seeding, as it is sometimes called, appeared to be relatively ineffective from the ground measurements of ice nuclei concentrations that were made downwind in the target (Bouqard 1963).

Thus, a crucial link in the chain of events in the seeding process in Project Whitetop was completely missing.  The method of seeding suggests another reason why results of Project Whitetop were doubtful; the seeding hypothesis itself may never have been fully tested.

The questionable seeding method used in Project Whitetop was similar to the one that was adopted in the first experiment in Israel that was begun at about the same time as Whitetop, and this in turn affected the choice of seeding method used in the Puglia experiment (List et al. 1999) that S01 discussed.  Patrol seeding was used in the Puglia experiment because it appeared to the Puglia design team that the first experiment in Israel had been a statistical success, and they wished to replicate exactly in their own experiment the seeding methodology that had apparently brought success in Israel.  Whether, in fact, the first experiment in Israel was a success is now subject to doubt on several accounts (e.g., Rangno and Hobbs 1995, 1997a,b.)

The assumptions about dispersion made by the Project Whitetop design team also represents one of several recurring themes in cloud seeding experiments: an exaggerated view of dispersion, an accompanying lack of dispersion measurements prior to cloud seeding experiments, and an underestimate of the natural ice concentrations in the clouds to be seeded.

  1. The two randomized seeding experiments in Israel

The two randomized experiments carried out in Israel deserve special attention beyond that given by S01 because of their importance for a number of years in convincing the scientific community, even the most skeptical scientists, that randomized cloud seeding experiments had finally produced a measurable result (e.g., Mason 1980, 1982; Kerr 1982; Silverman 1986; Dennis 1989; Young 1993; Cotton and Pielke 1995).  Indeed, many have believed that they were the onlyexperiments in cloud seeding that had demonstrated a seeding success among all those that have been conducted. In this context, S01 must be admired for his ability to move from one who has previously validated the results of the experiments in Israel to one who now believes as the author does that they did not prove cloud seeding effectiveness after all. However, some descriptions by S01 of the Rangno and Hobbs (1995, hereafter RH95) reexamination of these experiments are incomplete and require further discussion.

First, why did the experiments in Israel have such great credibility as successes to such a wide audience?  This was because they seemed to have had, for a time anyway, all of the requisites for unambiguous scientific credibility: a sound design that included randomization, a choice of evenly spaced rain gauges (at least in the first experiment) that was limited to all of the gauges in a pre-existing recording rain gauge network, an apparent confirmation of a statistically significant result in a follow-up confirmatory experiment, and a sound cloud microstructural basis for believing that the statistical successes reported were achievable because the clouds were so deficient in ice.

For example, the experimenters reported over a period of many years that the clouds in Israel achieved rather great depths and low cloud top temperatures (to –21°C) while producing little ice or precipitation (i.e., Gagin and Neumann 1974, 1976, 1981; Gagin 1975, 1980, 1981, 1986, hereafter GN74, GN76, GN81 and G75, G80, G81, and G86, respectively).  This left a wide window (–12° to –21° C) for seeding to initiate ice and precipitation in those clouds.  The higher temperature mentioned above demarcated the highest temperature at which appreciable concentrations of the silver iodide seeding crystals would have begun to nucleate and the lower temperature where it was reported that the natural ice concentrations were high enough that seeding was not required to boost ice content.

With cloud bases regularly at 800 m or so above sea level at 5-9°C (GN74, G75), this meant, according to these reports, that there was a large population of non-precipitating or barely precipitating clouds moving into Israel from the Mediterranean Sea that were as much as several kilometers deep.  Furthermore, in support of this picture, the effects of seeding, according to the experimenters, had been in duration of rainfall, not in intensity (G86), a fact compatible with the kind of seeding done.  From these many reports, it all made sense to outside scientists.

It will surprise and trouble many readers who do not follow the cloud seeding literature closely that the reporting of the results of the experiments by those who conducted them was not apropos according to normal scientific expectations.  This unfortunate element of these experiments, which necessarily impacts the reliability of the body of literature about them, is discussed in Section e.

  1. Seeding logistics and heterogeneities in the two experiments in Israel

Perhaps because the patrol method of seeding described in Section 4 had just been adopted by the United States in its major test of seeding in Project Whitetop, the experimenters in Israel, about to embark on their own major seeding trial at about the same time (in the late winter of 1960-1961), also chose this method.  In fact, patrol seeding was used almost exclusively in the six years of the first experiment (National Academy of Sciences 1973, GN74).[2]

However, the experimenters in Israel used a seeding track that was 65-75 km long, or about 15-25 km longer than the one used in Project Whitetop (Gabriel 1967).  Moreover, they had but a single twin-engine aircraft available to them to seed a longer experimental period over which rainfall was to be evaluated for seeding effects, a 24 h day vs. Project Whitetop’s 14 h experimental period.  Most remarkably, seeding by this method was carried out for an average of only about 4 h of the 24 h experimental day and yet still seemed to have produced statistically significant results (Gabriel 1967; Wurtele 1971; GN74).   The precipitation climatology of Israel, that makes this an astonishing fact, was discussed by RH95.

 Not surprisingly, the experimenters themselves came to realize the inadequacy of coverage of the 4 h per day of patrol seeding by a single aircraft in the first experiment.   When their second experiment began in the fall of 1969, they had added no less than 42 ground generators and a second aircraft with aircrews to man them 24 h a day (National Academy of Sciences 1973).

These new and greatly extended sources of seeding in the second experiment constituted an enormous heterogeneity in seeding coverage in the amount of seeding material released, and a shift in the methodology between the two experiments from solely airborne seeding to mainly ground seeding supplemented by airborne seeding.  Yet, implausibly, according to the partial statistical reports of the experimenters, the enormous increase in seeding and the shift in methodology produced virtually the same seeding result as in the first experiment, a 13% increase in rainfall in the North target (e.g., GN81) compared with the 15% overall increase in both targets of the first experiment when only seeding 4 h per day took place.

  1. The cloud microstructure of Israel does not make a case for seeding having produced statistically significant results in the experiments

A second factor that makes it implausible that the 4 h of seeding produced the statistical results reported in the first experiment, or effects in the second is that the clouds of the eastern Mediterranean are, in fact, largely unsuitable for seeding due to high concentrations of ice and the onset of ice at slightly supercooled cloud top temperatures (e.g., Rangno 1988; Rangno and Hobbs 1988, 1995, 1997a,b; Levin et al. 1996).

However, S01 stated that a “fraction” of the clouds of Israel do not correspond to those required for seeding to be effective.   S01, by using the phrase “a fraction of” the clouds may have been “unsuitable” for seeding, presumably means that some of the clouds making landfall on the Israeli coastline where they were to be seeded already contained high natural ice crystal concentrations and thus had no seeding potential, or had tops that were too warm for seeding to be effective, or were stratiform in nature with no updrafts below them to draw the seeding material upward as was noted in RH95.

However, the word “fraction”, as used by S01, is ambiguous and may inadvertently mislead Bulletin readers by suggesting that it means  “a small amount of.”

In fact, it would be a rare day in which high ice concentrations are not observed in mature and aging cumuliform clouds with tops  >–14°C.  Levin et al. (1996) gathered ice concentrations in clouds with tops warmer than about –14°C on several rather ordinary shower days in Israel and found tens to hundreds per liter in those clouds. The author directs the reader to papers that discuss the cloud microstructure of Israel (Rangno 1988, 2000; Rangno and Hobbs 1988, 1995, 1997a,b).

       2.  The stratifications of seeding effects by the cloud top temperatures in the second experiment are unreliable

S01 repeats the cloud top temperature stratifications that were reported on numerous occasions by the experimenters as having strongly partitioned seeding effects in the second experiment.  The experimenters reported, for example, that the maximum seeding effect in the second experiment was a 46% increase in rainfall compared with control days when the cloud top temperature was in the range of  –15° to –21°C (e.g., GN81).

However, the cloud top temperature stratifications by the experimenters are unreliable for several reasons and should not be quoted (RH95).  Also, in view of the tens to hundreds per liter ice particle concentrations found in the clouds of Israel with tops warmer than about –14°C on rather ordinary showery day situations (Levin et al. 1996), combined with the discovery that rain routinely falls from clouds with tops warmer than –10°C (Rangno 1988), it is no longer scientifically credible that the strongest seeding effect was produced in clouds that had top temperatures between –15° and –21°C where excessive natural ice crystal concentrations already exist.

       3.  Discussion of statistical issues:   Israel-1

S01 stated that RH95 concluded that the results of the first experiment were due to a false positive or Type I statistical error based solely on evidence reported by Wurtele (1971).   RH95 performed a “cradle to grave” analysis of the first experiment and several significant factors, besides the fact that the greatest apparent seeding effect was in a region that was avoided by the seeding aircraft, led us to our conclusion. We direct the reader to our paper and subsequent discussions of this issue (Rangno and Hobbs 1995, 1997a, 1997b; Rosenfeld 1997).

On the other hand, S01 himself offers no explanation in his evaluation of the first experiment about why the statistical significance was highest in the little-seeded Buffer Zone (BZ) that lay between the two targets.  In ignoring this fact S01 does not heed the same large “red flag” that should have raised skepticism about the statistically significant results in the first experiment more than thirty years ago.

No less than the chief meteorologist for the first experiment[3] stated, with notable candor in Wurtele (1971), that the BZ could only have been seeded 5-10% of the time, a conclusion sustained in RH95.  Moreover, GN74, themselves puzzling over this same statistical anomaly in the BZ, concluded that relying on a seeding argument for the BZ anomaly was weak (though they did it anyway) since the statistical significance in the BZ also accrued on seeded days in which the lone seeding aircraft did not even fly!

It would be interesting to learn what knowledge S01 has developed to refute these assessments by the experimenters themselves.       

      b.   Israel 2

Two Type I statistical errors in a row (lucky draws) is a slim possibility as some have noted concerning RH95.  However, two false positives in a row did not occur in the Israeli experiments when the same crossover scheme was used to evaluate both of them as was called for in the a priori design (Gabriel and Rosenfeld 1990, Silverman 2001).

Second, when using the South target gauges as the control for the North target area, as was also specified in the a priori design (e.g., GN74), a null result for the second experiment was produced again (Gabriel and Rosenfeld 1990; RH95).

However, in a third design component of the second experiment, a statistically significant result was evinced when a few rain gauges in a coastal plain upwind of the North target area were used to assess seeding effects in the target (GN81).  The statistical significance so obtained in the third of the three design evaluation components comprises the second statistically significant result in a row that S01 refers to.  Are you following me, reader?

At first glance, perhaps the achievement of any statistical significance in even one of the three design components is an impressive result even if it is outweighed by two null results (both of which went unreported at the time).

However, in a wider analysis than that performed by the experimenters, or by Gabriel and Rosenfeld (1990), RH95 found comparable or even heavier rain that fell on the seeded days in the North target area also fell over a wide region in and outside of northern Israel; namely, in central and southern Lebanon, western Jordan, and in Israel south of the North target area including Jerusalem itself!  Ironically, the experimenters had their offices in Jerusalem and were somehow oblivious to the heavy rain they were receiving when they seeded the North target area some 100 km to the north.

The single exception to this regional pattern of markedly heavier rain on North target area seeded days was in the coastal plain upwind of the North target area that had been pre-selected as a control zone.

The widespread regional pattern of bias in rainfall discovered by RH95 on North target seeded days suggests to meteorologists that the random draw was flawed or compromised by a bias in the weather systems that favored heavier rain over a synoptic scale region on North target area seeded days.

The second point that weakens the statistical significance obtained in the North target area is that those conducting the experiment did not specify the rain gauges for the evaluation prior to the experiment contrary to good scientific design (e.g., Court 1960).  Not naming gauges, or not using all of the established gauges in post analysis allows for “cherry-picking” of those gauges to find whatever result one wanted to find[4].

           c. The delayed reporting of statistical results and other actions by the experimenters constituted scientific misconduct and therefore the body of work by those researchers is inherently compromised

 S01 should be applauded for his valiant attempt in his review to ferret out the misleading reports of statistical significance.  However, there is a far more important test of the reliability of published results that S01 did not consider: if demonstrable scientific misconduct occurs in the reporting of results, then no publication by the wayward author(s) before or after this time can be considered reliable and they should not be quoted.

But what is “scientific misconduct”?

“Drug Maker Admits That It Concealed Tests Which Showed Flaws.”

“The Warner-Lambert Company, one of the nation’s largest drug companies, pleaded guilty yesterday to criminal charges and agreed to pay a $10 million fine for hiding from the Food and Drug Administration faulty manufacturing processes used for several drugs….”

                                                                                                –New York Times,  p1, 29 November 1995

Most readers can recognize egregious scientific misconduct such as concealing data that impact and change the conclusions of an experiment in which only favorable and therefore, deceptive results are published,  as described in the newspaper story above.

Misconduct also occurs when researchers conceal for many years the results of new experiments that contradict those of their previously published “successful” experiments on which the scientific community and public have depended upon.

Misconduct can also be understood to have occurred when a researcher denies access to his “lab” to bonafide workers in his field who have come to study and validate his unique long-published results, results that only his lab in all the world have produced with the “equipment” he has used.

We can all recognize these acts as contrary to the values of science and its pursuit of  truth.  An action such as the latter is particularly odious when the researcher’s much ballyhooed results are later shown to be wholly fictitious.

Very regrettably, all three acts of misconduct occurred in the cloud seeding experiments in Israel.  It is a matter of record that the experimenters chose to conceal the negative statistical results that accrued in the randomly seeded South target area of Israel-2 from the time that experiment ended in the spring of 1975 until 1990. These omitted statistical results, when incorporated into the mandated crossover evaluation of that experiment, resulted in a null (-2%) seeding effect (Gabriel and Rosenfeld 1990).[5]  Thus, the complete second experiment had not replicated the results of Israel-1 as Silverman (2001) also concludes but had been widely believed based on the experimenters’ partial reports limited to the North target area (e.g.,  Tukey et al. 1978, Kerr 1982; Silverman 1986).

The experimenters also chose to conceal from their colleagues the ongoing results of a third randomized cloud seeding experiment, Israel-3, that was taking place in central and southern Israel.  This experiment began in the fall of 1975 and ended in 1994.  The random seeding in this experiment suggested year after year that seeding was having no effect or possibly decreasing the rainfall in the target (e.g., Rosenfeld and Farbstein 1992; Rosenfeld 1998).  The first interim results of the third randomized experiment were not mentioned until 1992, 17 years after it had begun.  This reporting behavior is in contrast to the positive reports that were issued in journals part way through the first and second experiments by Gabriel 1967 and GN74 when the effects of seeding were indicated to be positive.

In summary, during 24 consecutive years of randomized seeding in the south target  in Israel-2 and -3 combined, had less rainfall (about 10%) on seeded days than on the control days.   This contrary knowledge was hidden from the scientific community for more than 15 years.  The original authors of the partial reports passed away before these concealed results were, or could be, reported in journals for the outside community to evaluate.

No one can doubt that the crucial negative statistical results of seeding described above in Israel-2 and -3, would have raised many questions, and should have been made known om a timely manner, first of all, to the experimenters’ own countrymen, to the outside scientific community as a whole, and especially to the scientific community in Jordan downwind of central and southern Israel that might have been impacted by the remote possibility of having their rainfall decreased.

In a third example of misconduct, this writer, known to the leader of the Israeli experiments as a skeptic[6] of the cloud microstructure reports that he had been publishing in journals, was denied access to the experimenters’ two radars during rainy spells to examine the heights (and temperatures) of precipitating clouds during his 11-week visit to Israel in early 1986.  One of the radars, a vertically pointing X-band or 3-cm wavelength radar, was located near the offices of the experimenters at a satellite office of the Hebrew University of Jerusalem.  The second, a C-band or 5.5-cm wavelength radar, was located on the grounds of Ben Gurion Airport to which this writer bicycled to from Tel Aviv for a meeting with the leader of these experiments who forbade him to go there during storms due to “airport security.”

From the rawinsonde data analyzed by me in 1988, and from the airborne data of Levin et al. 1996 we now know why the experimenters did this.

It doesn’t seem possible to conjure up the magnitude of incompetence required on the part of the experimenters to misinterpret so many cloud measurements over so many years from the many measurement sources they had at their disposal:  their own radars, satellite thermal imagery which they used routinely for forecasting cloud seeding opportunities and in their research reports (e.g., Rosenfeld 1980; G80), their own aircraft that for two rainy seasons skimmed the tops of clouds over their vertically pointing radar at Jerusalem (e.g., G80).   And, of course, they also had the Israel Meteorological Service (IMS) rawinsonde profiles launched up to four times a day from Bet Dagan (near Tel Aviv )from which it could be discerned that the clouds were not as they were describing them.

In view of these documentable instances of misconduct by the experimenters, none of the publications regarding cloud seeding, or its potential in Israel or elsewhere by those who participated in these acts, can be considered reliable.  Such publications should not be quoted until the full story concerning the actions of the experimenters is revealed.   Of particular interest is the original list of random decisions for Israel-2 due to the extreme one-sided nature of that draw on seeded days (Gabriel and Rosenfeld 1990).  We need to be sure that the list wasn’t compromised when heavy rain was forecast by the Israel Meteorological Service.  From experience in commercial projects, I know that it’s satisfying to say when someone asks that you seeded when heavy rain falls.

  1. But why discuss misconduct in science? Won’t a discussion of, or a finding of “misconduct” diminish public support of science?  And won’t that, in turn, lessen the job opportunities that we workers in science might have?

In fact, from our own narrow purview, it could be (and will be by some) argued that we should never discuss or even mention misconduct in any area of science.  Rather, we should promote the thought that as scientists, we are not like other people, but, in fact, are superior to them and never do anything wrong or fraudulent because of our training like other people.  Sarcasm here.

Of course, we must not only discuss but eradicate misconduct from our ranks or others will.  And, yes, it is likely that there will be some erosion of public support for cloud seeding in the face of reports of misconduct in that field.  Someone may indeed lose his job.

But from a larger viewpoint, it is an outrage to not consider the question of whether scientific misconduct occurred that resulted in misspent tens of millions of public dollars.

Most worrisome, there are no guarantees that this will not happen again. We do not know, for example, if more data relative to cloud seeding or cloud microstructure are being concealed or consciously misanalyzed by this same group in ongoing efforts to justify what now appears to be a dubious operational cloud seeding program begun by the Israeli government in 1975 that was based on the experimenters’ partial statistical reports of seeding success and descriptions of  fictitious clouds.

Update: Due to the re-analysis of the Israeli experiments in 1995, and the subsequent journal exchanges in 1997, a panel was formed by the Israeli government to independently examine the results operational cloud seeding of the Sea of Galilee (Lake Kinneret) that began with the winter of 1975-76.  The panel found no  viable evidence that cloud seeding had increased runoff into the Sea of Galilee over a 27 year period (Kessler et al. 2006, Sharon et al. 2008).  Israel-4 ended with a null result after seven seasons of randomized seeding (Benjamini et al. 2023).

A reputational dark cloud will hang over the group from which these acts originated until the details are fully known and the data in these papers verified.  An independent panel of inquiry into these matters, while time consuming, can only benefit all parties by lifting this dark cloud so that we can move ahead.

On the other hand, the field of cloud seeding is unique in the atmospheric sciences.  Its past charlatans, quacks, and even misguided, self-deceived but sincere scientists who made ludicrous claims about seeding effects, have been well documented throughout its history (e.g., Fleming 2010).  In the early days of modern cloud seeding we had the USWB with their aircraft and their independent scientists (e.g., Coons and Gunn 1951) to invalidate some of the outrageous claims being made.

Today, it seems, we have only the peer-review process to ensure that the truth is told.  And, from the many reversals of published findings of major, even widely accepted experiment results, some once seen as having “proved” cloud seeding as evaluated by our best scientists (e.g., National Academy of Sciences 1973), we can conclude that peer-review is but a thin “firewall” indeed against this type of more subtle quackery.

Workers in weather modification today, like S01, with their own continuing silence on the matter of the omitted, crucial statistical results of the experiments conducted in Israel, are exhibiting an eerie tolerance for a pernicious kind of science reporting in journals on cloud seeding that, from this author’s viewpoint, threatens to destroy this field altogether.

 

REFERENCES

Benjamini, Y, A.,  Givati, P.,  Khain, Y. Levi, D. Rosenfeld, U. Shamir, A. Siegel, A. Zipori, B. Ziv, and D. M. Steinberg, 2023:  The Israel 4 Cloud Seeding Experiment: Primary Results.   J. Appl. Meteor. Climate, 62, 317-327.  https://doi.org/10.1175/JAMC-D-22-0077.1

Bouqard, A. D., 1963: Ice nucleus concentrations at the ground.  J. Atmos. Sci., 20, 386-391.

Braham, R. R., Jr., 1964: What is the role of ice in summer rain-showers?  J. Atmos. Sci., 21, 640-646.

_______________., 1979:  Field experimentation in weather modification.  J. Amer. Stat.

        Assoc., 74, 57-68.

Coons, R. D., E. L. Jones, and R. Gunn, 1949: Artificial production of precipitation.  Third Partial Report: Orographic Stratiform Clouds–California, 1949.  Fourth Partial Report: Cumuliform Clouds–Gulf States, 1949.  U. S. Weather Bureau Res. Paper No. 33, Government Printing Office, Washington, 46 pp.

_________, and R. Gunn, 1951: Relation of artificial cloud modification to the production of precipitation.  Compendium of Meteorology.  Amer. Meteor. Soc., 235-241.

Cotton, W. R., and R. A. Pielke, 1995: Human Impacts on Weather and Climate, 2nd edition, Cambridge University Press, 288 pp.

Court, A., 1960: Evaluation of cloud seeding trials.  J. Irrig. and Drainage Div., Proc. Am. Soc. Civ. Eng., 86, No. IR 1, 121-126.

Dennis, A. S., 1989: Editorial to the A. Gagin memorial issue. J. Appl. Meteor., 28, 1013.

Fleming, J. R., 2010:  Fixing the Sky:  The Checkered History of Weather and Climate Control.  Columbia University Press,  306pp.

Gabriel, K. R., 1967: The Israeli artificial rainfall stimulation experiment: statistical evaluation for the period 1961–1965.  Proceedings, Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5, L. M. LeCam and J. Neyman, eds., University of California Press, 91–113.

_______, and D. Rosenfeld, 1990: The second Israeli rainfall stimulation experiment: analysis of rainfall on both target areas.  J. Appl. Meteor., 29, 1055–1067.

Gagin, A., 1975: The ice phase in winter continental cumulus clouds.  J. Atmos. Sci., 32, 1604–1614.

________, 1980:  The relationship between the depth of cumuliform clouds and their raindrop characteristics.  J. Res. Atmos., 14, 409-422.

_______, 1981:  The Israeli rainfall enhancement experiments. A physical overview. J. Wea. Modif., 13, 1–13.

________., 1986: Evaluation of “static” and “dynamic” seeding concepts through analyses of Israeli II and FACE-2 experiments. In Precipitation Enhancement–A Scientific Challenge, Meteor. Monog., 21, No. 43, Amer. Meteor. Soc., 63-70.

_______, and J. Neumann, 1974: Rain stimulation and cloud physics in Israel. Weather and Climate Modification, W. N. Hess, Ed., John Wiley and Sons, 454–494.

________., and J. Neumann, 1976: The second Israeli cloud seeding experiment–the effect of seeding on varying cloud populations. Proc. II WMO Sci. Conf. Weather Modification, Boulder, WMO Geneva, 195-204.

_______, and _________, 1981: The second Israeli randomized cloud seeding experiment: evaluation of results.  J. Appl. Meteor., 20, 1301–1311.

Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26-28.

Hobbs, P. V., 1969:  Ice multiplication in clouds.  J. Atmos. Sci., 26, 315-318.

__________., and A. J. Alkezweeny, 1968:  The fragmentation of freezing water droplets in free fall.  J. Atmos. Sci., 25, 881-888.

Kerr, R. A., 1982: Cloud seeding: one success in 35 years.  Science, 217, 519–522.

Kessler, A., A. Cohen, D. Sharon, 2006:  Analysis of the cloud seeding in northern Israel. A report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure, In Hebrew with an English abstract). 117pp.  No doi.

Koenig, L. R., 1963:  The glaciating behavior of small cumulonimbus clouds.  J. Atmos. Sci., 20, 29-47.

Kraus, E. B., and P. A. Squires, 1947:  Experiments on the stimulation of clouds to produce rain.  Nature, 159, 489-492.

Lawson, R. P., and T. L. Jensen, 1998: Improved microphysical measurements in mixed phase clouds. Preprints, Conf. Cloud Phys., Everett, WA, Amer. Meteor. Soc. 451-454.

Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean.  J. Appl. Meteor., 35, 1511-1523.

List, R., K. R. Gabriel, B. A. Silverman, Z. Levin, and T. Karacoastas, 1999:  The rain enhancement experiment in Puglia, Italy:  statistical evaluation.  J. Appl. Meteor. 38, 281-289.

Lovasich, J. L., J. Neyman, E. L. Scott, and J. A. Smith, 1969: Wind directions aloft and effects of seeding on precipitation in the Whitetop experiment.  Proceedings, National Acad. Sci., 64, 810-817.

Mason, B. J., 1980:  A review of three long-term cloud-seeding experiments.  Meteor. Mag., 109, 335-344.

___________, 1982:  Personal reflections on 35 years of cloud seeding.  Contemp. Phys., 23, 311-327.

Mossop, S. C., 1985: Secondary ice particle production during rime growth:  the effect of drop size distribution and rimer velocity.  Quart. J. Roy. Met. Soc., 111, 1113-1124.

National Academy of Sciences, 1973: Weather Modification: Progress and Problems. T. F. Malone, ed., 258 pp. (Available from the National Research Council, Washington, D. C.)

Rangno, A. L., 1988: Rain from clouds with tops warmer than –10°C. Quart J. Roy. Meteor. Soc., 114, 495-513.

___________, 2000:  Comments on “A review of cloud seeding experiments to enhance precipitation and some new prospects.” Bull. Amer. Meteor. Soc., 81, 583-585.

____________, and P. V. Hobbs, 1988: Criteria for the development of significant concentrations of ice particles in cumulus clouds. Atmos. Res., 22, 1-13.

_____________, and __________, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Met. Soc., 117, 207-241.

___________, and __________, 1994:  Ice particle concentrations and precipitation development in small continental cumuliform clouds. Quart. J. Roy. Meteor. Soc., 120, 573-601.

___________,  and P. V. Hobbs, 1995: A new look at the Israeli cloud seeding experiments.  J. Appl. Meteor., 34, 1169-1193.

___________, and _________, 1997a: Reply to Rosenfeld.  J. Appl. Meteor., 36, 272-276.

___________, and _________, 1997b: Comprehensive Reply to Rosenfeld. Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25 pp.

Rosenfeld, D., 1980:  Characteristics of rain cloud systems in Israel derived from radar and satellite images.  M. S. Thesis, The Hebrew University of Jerusalem, Israel, 129 pp. (Available from the Department of Geosciences, Hebrew University of Jerusalem, Israel)

___________, 1997: Comment on “Reanalysis of the Israeli Cloud Seeding Experiments.” J. Appl. Meteor., 36, 260-271.

___________, 1998: The third Israeli randomized cloud seeding experiment in the south: evaluation of the results and review of all three experiments. Preprints, 14th Conf. on Planned and Inadvertent Wea. Modif., Everett, Amer. Meteor. Soc. 565-568.

___________., and H. Farbstein, 1992: Possible influence of desert dust on seedability of clouds in Israel. J. Appl. Meteor., 31, 722-731.

Sharon, D., A. Kessler, A. Cohen, and E. Doveh, 2008:  The history and recent revision of Israel’s cloud seeding program.  Isr. J. Earth Sci., 57, 65-69.     https://DOI.org/10.1560/IJES.57.1.65.

Silverman, B. A., 1986: Static mode seeding of summer cumuli–a review. In Precipitation Enhancement–A Scientific Challenge, Meteor. Monog., 21, No. 43, 7-20.

_____________, 2001:  A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement.  Bull. Amer. Meteor. Soc., 82, 903-923.

Stith, J. L., J. E. Dye, A. Bansemer, A. J. Heymsfield, C. A. Grainger, W. A. Petersen, and R. Cifelli, 2002:  Microphysical observations of tropical clouds.   J. Appl. Meteor., 41, 97-117.

Turkey,  J. W.,  D. R. Brillinger, and L. V. Jones, 1978b: Report of the Statistical Task Force to the Weather Modification Advisory Board, Vol. II.  U. S. Government Printing Office, pE-3.

Young, K. C., 1993: Microphysical Processes in Clouds.  Oxford University Press, 335-336.

Wurtele, Z. S., 1971: Analysis of the Israeli cloud seeding experiment by means of concomitant meteorological variables. J. Appl. Meteor., 10, 1185-1192.

Footnotes

[1] The University of California Statistical Laboratory under the direction of Jerzey Neyman.

[2] Four ground generators were located in hilly terrain in the extreme northeast portion of the country.

[3] The Chief Meteorologist for the seeding experiments in Israel was misidentified by Wurtele (1971) as a meteorologist with the Israel Meteorological Service.

[4] Rangno and Hobbs (1995) used a subset of rain gauges that whose data were routinely published in monthly or annual summaries by the Israel Meteorological Service and therefore, were “pre-selected” by the Israel Meteorological Service, an agency not affiliated with the seeding experiments.

5 Even then, these “full” statistical results for the second crossover seeding experiment were not published in a vacuum; but only after the leader of the experiments passed away in 1987, and after a letter-writing campaign to Israeli government offices by the former Chief Meteorologist of the experiments urging the experimenters to publish the full results.

[6] My July 1983 submitted article,  asserting that rain was falling from clouds with tops much warmer than could be accounted for by the experimenters’ cloud descriptions was rejected by J. Climate  Appl. Meteor. in 1983 (B. A. Silverman, co-chief Editor, private communication.)  Moreover, the leader of the experiments in Israel had provided a lengthy and perhaps pivotal negative review of that paper (A. Gagin, 1984, private communication.)

A Review of the Israeli Cloud Seeding Experience in the Context of the 2023 Israel 4 Null Primary Result

PROLOGUE

I have written an extensive,  “comment” and “enhancement” of an article by Benjamini et al.  published in the in J. Appl. Meteor.  in January 2023.  The article was about the results of a fourth randomized Israeli cloud seeding experiment, Israel-4.   My “comments” and “enhancement” of Benjamini et al. (2023) posted below would never be published in an Amer. Meteor. Soc. journal.  The words are too strong.  So, I am going this route, a blog post.

Evidence for such a contentious assertion?  Prior experience.

I submitted a paper on the history of Israeli cloud seeding in 2018.  The journal, the Bull. Amer. Meteor. Soc. (BAMS) got but two reviews:  “Accept, important paper, minor revisions” by one Israeli scientist, and the second review, an outright “reject” in  a long review by an Israeli seeding partisan who signed his review. The chief editor of BAMS did not allow me  to revise my manuscript where needed (minor corrections),  nor rebut  the many specious comments by the seeding partisan.

Why is this behavior by the chief editor of BAMS outrageous and in non-compliance with our science ideals?

Replying to the comments of reviewers of manuscripts following peer-review is standard procedure in science after which a final decision on publication is then reached by the editor based on the responses of the author and the revisions made in the submitted manuscript.  This is exactly the process that Prof. Dave Schultz, Chief Editor of the Amer. Meteor. Soc. journal, The Monthly Weather Review,  and I are going through right now with a cloud seeding manuscript on the Colorado River Basin Pilot Project sub omitted to the AMS’ J. Appl. Meteor. and Climate (as of January 2024).

As an acknowledged expert on Israeli clouds, weather, and cloud seeding (e.g., Rangno 1988, Rangno and Hobbs 1995a), I deemed this refusal by the BAMS Chief Editor to allow me to respond to the comments of the two reviewers the sign of a corrupted journal process within the Amer. Meteor. Soc.:  Certain stories about failed science are not to be told, especially if they involve a country people have strong feelings about, as in this case.   My 2018 history describes unimaginably inadequate peer-reviews of the original published reports, those describing ripe for  seeding  clouds and the cloud seeding statistical “successes” that were all scientific mirages crafted by cloud seeding partisans.

The manuscript below has the same elements as the 2018 submission thus guaranteeing its rejection by a partisan AMS leadership.  But I feel strongly that certain things need to be said, and questions asked, to stop seeding partisans in Israel from costing their country so much in wasted cloud seeding efforts as they have over so many decades.  Sound implausible?  Read on…..

Despite what might be considered some “harsh” language at times, I consider myself a friend of Israel and donate to the American-Israeli Cooperative Enterprise, an organization that regularly counters the negative descriptions of Israel in much of the media today in their “Myth vs. Facts” segments.

=========THE MANUSCRIPT==========

ABSTRACT

The result of a fourth long-term randomized cloud seeding experiment in Israel, Israel-4, has been reported by Benjamini et al. 2023.  The seven-season randomized cloud seeding experiment ended in 2020 with a non-statistically significant result on rainfall (a suggested increase in rain of 1.8%).  This review puts the results of Israel-4 in the context of prior independent reanalyses of Israel-1 and -2,  reanalyses that can be said to have anticipated a null result of both the Israel-4 experiment and the lack of evidence that rain had been increased in the 30 plus years of the operational cloud seeding program targeting the Lake Kinneret (Sea of Galilee) watershed discovered in 2006 by an independent panel of Israeli experts.  The published literature that overturned the reports of success in the first two experiments, Israel-1 and Israel-2, was omitted by Benjamini et al., and thus, misled readers concerning those first two experiments.

The lack of cloud seeding success in Israel can be attributed to unsuitable clouds for seeding purposes, ones that form prolific concentrations of natural ice at relatively slight to moderate supercoolings which preclude seeding successes using glaciogenic seeding agents.

The phenomenon of “one-sided citing,” practiced by Benjamini et al. via the omission of relevant contrary literature is addressed.   Several corrections to and enhancements of the Benjamini et al. article are also included.

===================================================

  1. Introduction and Background

The results of the first two randomized crossover cloud seeding experiments in Israel, Israel-1 and Israel-2, discussed recently by Benjamini et al. 2023, as well as the descriptions of “ripe for seeding” clouds in Israel by the seeding experimenters, had an important role in the history of cloud seeding.   For many years it appeared that the viability of cloud seeding to have produced economically important amounts of rain had been established in those two “crossover” experiments conducted by scientists at the Hebrew University of Jerusalem (HUJ) (e.g., Kerr 1982, Mason 1982, Dennis 1989).  In descriptions of the first two benchmark experiments, ones that created the scientific consensus described above, Benjamini et al.  (2023, hereafter, “B23,”) do not tell the whole story in their history of cloud seeding in Israel that preceded their evaluation of Israel-4.

This review is meant to fill in the gaps for the reader left by B23 about those first two experiments that had so much practical impact.  For example, the Israel National Water Authority (INWA) began a several decades-long operational cloud seeding of the watersheds around Lake Kinneret (aka, Sea of Galilee) based on the seemingly favorable results of Israel-1 and those in the “confirmatory” Israel-2 experiment that followed (Gabriel 1967a; b; Neumann et al. 1967; Wurtele 1971; Gagin and Neumann 1974; 1976).  The INWA began seeding Lake Kinneret’s watersheds in November through April, beginning with the 1975/76, the winter season that immediately followed the end of Israel-2.

The statistical results of Israel-1 and -2 were backed by several cloud microstructure reports over the years that underpinned the idea that rain could be increased substantially by seeding Israel’s clouds (e.g., Gagin 1975, 1981, 1986, Gagin and Neumann 1974, 1976, 1981).  These reports caused Science magazine’s reporter, Richard Kerr,  to proclaim in 1982 that those first two Israeli experiments constituted the “One success in 35 years” of cloud seeding experimentation.  Kerr (1982) also wrote:

The Israeli II1 data must still be reanalyzed by other statisticians, but most researchers are also impressed that the results make so much physical sense.  The clouds that Gagin and Neumann hypothesized would be most susceptible to seeding did indeed produce the most additional rain after seeding.”

These statements are compatible with the history that B23 have provided, but it was to be far from the end of the “story.”

Fifteen years after Israel-2 had been completed it was learned that the random seeding of the south target clouds of Israel-2, a crossover experiment as Israel-1 had been, produced the indication that cloud seeding had decreased rainfall by a substantial amount, 15% (Gabriel and Rosenfeld 1990)2.  Gagin and Neumann (1981), however, had claimed that the random seeding that took place in the south target was “non-experimental” and so did not report the results of random seeding there.  No one challenged this claim. 

Until 1981 the result of seeding in the south target seeding had been described as “inconclusive” (Gagin and Neumann 1976), and prior to that, by (Gagin and Neumann 1974) after the first two seasons of Israel-2, that seeding had resulted in a seed/no seed average rainfall fraction in the south target that was “less than 1,” suggesting rain might have been decreased on seeded days.

However, the crossover evaluation of seeding in Israel-2 was not reported until Gabriel and Rosenfeld (1990)2.  The design document, approved by the Israeli Rain Committee and completed before Israel-2 began had, however, mandated a crossover evaluation (Silverman 2001) as had been done for Israel-1.  Nowhere did Gagin (1981) or Gagin and Neumann (1974, 1976, 1981) explain why they did not perform the mandated crossover evaluation of Israel-2.

Instead of Israel-2 crossover evaluation replicating Israel-1, where seeding appeared to have increased rainfall by about 15% when the data from both targets was combined (e.g., Wurtele 1971), the crossover evaluation of Israel-2 indicated a slight decrease in rainfall of 2% (not statistically significant).  Thus, Israel-2 had not replicated Israel-1 in an important way.

But results of Israel-2 were complex, as noted by Gabriel and Rosenfeld (1990) and left questions that they could not resolve.  The most revealing statement in Gabriel and Rosenfeld (1990) in reporting the “full” results of Israel-2 was this enigma (my italics and bold font):

There is a surprising contradiction between this finding and those of the analyses of Tables 4-17.  The difference occurs because the historical comparison of Table 18 ignores the unusually high south precipitation on north-seeded days (as well as the north precipitation on south-seeded days).  In other words, it is what happened when there was no seeding that causes the differences between the two analyses. The different choice of “control” days for the south, whether all the rainy days of 1949-60 or the north-seeded days of 1969-75, is what crucially affects the comparison.  If such large differences-of a magnitude of several standard errors and clearly significant by the usual statistical criteria-occur by chance, then chance operates in unexpected ways on precipitation and historical comparisons become highly suspect (see also Gabriel and Petrondas 1983). Otherwise, one would need to explain why there was so much more rain in the south when the north was being seeded; as of now, no explanation is available, especially as the prevailing wind direction is from the southwest.”

A “Type I statistical error,” the “good draw,” in Israel-2, heavy rains that affected both targets on north target seeded days3, was there for all to see if they wanted to.

Thus, a severe blow to the idea of randomizing cloud seeding experiments occurred in Israel-2 due to the exceptional random draw described by Gagin and Rosenfeld (1990).  Randomization could produce wildly unrepresentative results in which slight, but important, rain increases due to seeding could be forever hidden.

The null result of the combined targets in Israel-2 was due to an apparent decrease in rainfall on seeded days in the south target (~15%) that canceled out apparent increases in rainfall (~13%) in the north target.   Despite the new result and the many questions it raised, the INWA continued the commercial-like seeding of the Lake Kinneret watersheds during the winter rain seasons for more than 20 years after Gabriel and Rosenfeld’s (1990) disclosure of the “full” results of Israel-2.

The continuation of seeding of Lake Kinneret watersheds in northern Israel by the INWA despite the Israel-2 null result may have been due to the hypothesis put forward by Rosenfeld and Farbstein (1992)4; “dust/haze” had interfered with seeding in Israel -2 by creating high natural ice particle concentrations in supercooled clouds and that the presence of “dust/haze” even resulted in collisions with coalescence-formed rain (“the warm rain” process) that does not require the ice phase.  These cloud attributes, they concluded, meant there could be no increases in rainfall due to cloud seeding in the south target nor in the north target when dust/haze was present.  Without “dust/haze,” Rosenfeld and Farbstein argued, the clouds of Israel were as ripe as ever for cloud seeding.

2).    The Motivation for a Reanalysis of Israel-1 and Israel-2

The publication and the hypothesis of Rosenfeld and Farbstein (1992) formed the motivation for the Rangno and Hobbs 1995, hereafter RH95a) reanalyses of Israel-1 and -2.  This writer had spent 11 winter weeks in Israel in 1986 studying the rain-producing characteristics of Israeli clouds and felt Rosenfeld and Farbstein’s hypothesis had little credibility;  a full independent review of Israel-1 and -2 was needed as had been suggested in Science magazine (Kerr 1982).  And it would be done by someone who knew the clouds and weather of Israel (Rangno 1983, rejected by the J. Appl. Meteor.; Rangno (1988), Rangno and Hobbs (1988, hereafter, RH88).

I am also experienced in exposing suspect cloud seeding claims in the published literature (e.g., Hobbs and Rangno 1978, 1979, Rangno 1979, 1986, Rangno and Hobbs 1980a, b, 1981, 1987, 1993, 1995b).  By the time I began reanalyzing the Israeli experiments in 1992 I had also logged more than 400 flights for the University of Washington’s Cloud and Aerosol Group in studies that mostly concerned ice crystaldevelopment in slightly supercooled clouds in polar air masses similar to those that affect Israel (Rangno and Hobbs 1983, 1991, 1994, Hobbs and Rangno 1985, 1990).

3).   The results of the Rangno and Hobbs (1995) benchmark reanalyses of Israel-1 and Israel-2 that went uncited by B23

RH95 concluded that neither Israel-1 nor Israel-2 had produced bona fide increases in rain on seeded days, contradicting the HUJ experimenters’ reports and those contained in B23 that cloud seeding had increased rain in each of these experiments.  The conclusions of RH95 were given support by Silverman (2001) and later, for Israel-2, by Levin et al. (2010).

Moreover, in R88 it was strongly indicated that the “ripe for seeding” clouds described repeatedly by the experimenters (e.g., Gagin and Neumann 1974, 1976, 1981, Gagin 1975, 1981, 1986) did not exist.   The findings in R88 concerning shallow clouds that rained was not news to Israel Meteorological Service forecasters with whom I spoke nor to the Israeli experiments’ “Chief Meteorologist,” Mr. Karl Rosner.  Mr. Rosner wrote to me in 1987 that, “sometimes heavy rain fell from clouds with tops at -8°C.”  Thus, in contrast to the many HUJ experimenters’ reports cited previously, it was widely known by weather forecasters in Israel that rain fell regularly from clouds with tops >-10°C (~3-4 km thick clouds) as was documented in R88.

The HUJ experimenters had also reported, contrary to the above,  that many clouds with radar measured tops between -15°C and -21°C did not precipitate naturally due to a lack of ice in them or that precipitation formed by “warm rain” (collisions with coalescence) process (e.g., Gagin 1981, 1986) did not occur.  Those non-precipitating clouds in this low radar top temperature range were responsible for extra-large increases (46%) in rain on seeded days  (Gagin and Neumann 1981, Gagin and Gabriel 1987).

Seeding, they also reported, had no effect on naturally precipitating clouds, a finding compatible with the “static” seeding method carried out by the HUJ experimenters where small amounts of the seeding agent,  silver iodide are released.   Namely, when seeding took place, it rained for more hours on seeded days than on control days, but it did not rain harder.

B23 also refer to the Israel-2 low radar top temperature partition as having been associated with increases in rain.

(Questions)

Is it possible that Israeli weather forecasters and the “chief meteorologist” of the Israeli cloud seeding experiments had a better idea of which clouds rained in Israel than those whose research careers at the HUJ depended on reliable assessments of their own clouds and their cloud seeding potential?   Ans.  Probably not.

Why?

This writer, while welcomed at the Israel Meteorological Service in January 1986, was denied access to the seeding experimenters’ radar on the grounds of Ben Gurion AP to obtain echo heights  by the leader of the Israeli experiments, Prof. A. Gagin.  He insisted in our meeting that my monitoring of top heights would only confirm his cloud reports; that it took deep and very cold-topped clouds to rain in Israel.

It was also learned during January 1986 at about this same time that no less than six attempts had been proposed by outside groups to do airborne studies of the seemingly unique clouds of Israel, as shown in RH88, ones that had responded so well to cloud seeding (Personal communication, Prof. Gabor Vali, University of Wyoming, 31 January 1986).  Every one of those attempts to study Israeli clouds had been blocked.

Why?  And by whom?

  1. More about Rangno and Hobbs (1995): the most controversial and commented on paper ever published in an Amer. Meteor. Soc. journal and the unusual strategy used by the editor in choosing reviewers

 In a moment of brilliance (in retrospect), the editor for our journal manuscript, L. Randall Koenig, chose three reviewers who would be sure to reject the RH95a manuscript and its negative findings concerning cloud seeding.  But at the same time, Koenig realized that there would be no easy pass on it; no stone would go unturned by the reviewers, and our findings would be severely tested.  In fact, RH95 was significantly better for having cloud seeding partisans, H. Orville, W. Woodley, and D. Rosenfeld, review it (all signed their reviews).

Editor Koenig, himself an expert on weather modification and cloud microphysics (e.g., Koenig 1963, 1977, 1984), was also steeped in the long record of frequent mischief by those in the cloud seeding domain, weighed the arguments of the reviewers and the modifications of RH95a that reflected the reviewers’ criticisms:  He made the choice to publish RH95a.

It took courage for Editor Koenig to do that and recognizing who he felt had the better arguments.  In RH95a were the first two independent re-analyses of Israel-1 and Israel-2, as had been recommended years earlier in Kerr (1982) but ones that were clearly not going to take place.   How many other papers in our journals would be the improved and bogus claims eliminated if editors used the strategy of of Koenig and were as informed about the topic of the manuscript?

Perhaps due to the size of the ox being gored, our paper drew comments by the reviewers of our manuscript and others (1997a, b, c, d, e).   The number of journal pages involved in “Comments” and “Replies” on a single article is still a record for an Amer. Meteor. Soc. journal.   We draw particular attention to our “Replies” to the many, as we showed, specious “Comments” of Dr. Rosenfeld in RH97a and RH97b, and a B23 co-author.

Let the reader decide where truth lies.  We urge the reader to carefully review RH95a and our replies for the considerable evidence we present that the Israel-1 and Israel-2 experiments were both mirages of cloud seeding successes, contrary to the assertions in B23.

  1. Israel-3: enhancing B23’s description

B23 describe the results of the longest randomized cloud seeding experiment ever conducted, Israel-3 (1975-1995), a single target experiment.  However, they omit informing the reader that the remarkable “inconclusive” result was a suggested 9% decrease in rainfall on seeded days compared to non-seeded days (Rosenfeld 1998).  By omitting the sign of the null result, B23 left the reader to speculate on what the sign of the “null” result was.  The suggestion of a decrease in rain on seeded days again points to clouds naturally form precipitation very efficiently in Israel.  With the result of Israel -3 in hand, the reader would now learn, with Israel-2 (Gabriel and Rosenfeld 1990), that over a period of 25 plus years (Israel-2 and Israel-3 combined) decreases in rainfall due to seeding were suggested in central and southern Israel by cloud seeding!

  1. Rectifying B23’s statement concerning operational seeding

B23 state the increase in rainfall during the operational seeding, 1975/76 winter to 1990 reported by Nirel and Rosenfeld (1995) was “6-11%.”  In the abstract of the quoted article, the authors state that rainfall due to cloud seeding was increased by 6%, not “6-11%.”  This same increase in rain (6%) was also quoted by Sharon et al. (2008).

Moreover, the 6% increase in rain (said to be statistically significant by Nirel and Rosenfeld 1995) was not confirmed by Kessler et al. (2006) in their independent evaluation of operational seeding through the same period.  The independent panel reported 4.8% suggested rain enhancement over the same period evaluated by Nirel and Rosenfeld (Figure 1). 

Figure 1. The results of operational seeding on the watersheds of Lake Kinneret (aka, Sea of Galilee) as reported by Kessler et al. 2006.  (a) is that result of seeding on rainfall reported by Nirel and Rosenfeld (1995), b-d are the results found for various periods, including the very same era evaluated by Nirel and Rosenfeld (1995)5.

  1. What triggered the formation of an independent panel to evaluate cloud seeding?

The panel was created after RH95a was published and then followed by extensive journal exchanges by RH97a, b, c, d, e, in “Replies” to various “Comments” in 1997.  The INWA was then inspired to form an independent panel of experts due to these exchanges to evaluate what they were getting from the operational seeding of Lake Kinneret’s (aka, Sea of Galilee) watersheds rather than relying on the evaluations by the seeding promoters at the HUJ (e.g., Nirel and Rosenfeld 1995).  The results found by the panel are shown in Figure 1.

Should the lack of seeding results after 1990 shown in Figure 1 surprise?  I don’t think so.  This sequence of optimistic claims by seeding experimenters concerning their own experiments followed by reanalyses by external skeptics that find the original claims were “scientific mirages” (Foster and Huber 1997, Judging Science) is a pathology within the cloud seeding realm that has dogged it since its earliest days (e.g., Brier and Enger 1952, versus MacCready 1952).

In view of Figure 1, one must ask, “What if there had been no RH95a”?

We suspect that not citing our independent re-analyses of Israel-1 and Israel-2, Silverman’s (2001) conclusions concerning the first two Israeli experiments, and Wurtele (1971) who first drew the attention to a major red flag in Israel-1, combined with the fact that the HUJ experimenters failed to even understand the precipitating nature of their own clouds for decades with all the tools at their command, all pose monumental science embarrassments for Israel, their scientists, and for the prestigious HUJ from which the faulty reports emanated.

Can there be other reasons for not citing the work of external, foreign workers who overturned benchmark experimental science by the home country’s scientists?

  1. Did the background airborne microphysical measurements that preceded Israel-4 justify a new experiment?

B23 cite Freud et al. (2015) as having demonstrated cloud seeding potential in the mountainous north region of Israel through a series of airborne flights; but did it support the idea of strong cloud seeding potential as B23 assert?

No.

I was not asked to review Freud et al. 2015, as one might have expected given my background.  Nevertheless, I carried out a post publication “comprehensive review” that can be found under 2017 here.

Freud et al. 2015 was a “Jekyll and Hyde” read; some of the best reporting by the HUJ’s cloud seeding unit was contained in it.  But it also contained misleading statements.  My recommendation after reading what I considered to be a strongly biased study that was going to mislead the INWA concerning cloud seeding potential: “Don’t do a cloud seeding experiment in northern Israel based on the research of Freud et al. (2015)!”

 As the INWA could have suspected, Freud et al. (2015) would not be the first time that cloud seeding researchers at the HUJ had misled the INWA about the clouds of Israel being filled with cloud seeding potential.  My conclusion regarding the false picture of “abundant” cloud seeding potential in the northern mountains of Israel painted by Freud et al. 2015 was, in essence, affirmed post facto by the “primary” results of Israel 4.  The “abundant” cloud seeding potential in northern Israel described by Freud et al. (2015) was not realized or was imaginary to begin with.

A caveat on airborne sampling:  One can “lie” with aircraft measurements by sampling only newly risen turrets and avoiding those that are maturing or in aged states with appreciable ice particle concentrations.  Gagin and Neumann (1974), for example, stated that they chose only newly risen turrets, narrow ones at that, and flew research flights on mostly dry days, and those choices misled them and the rest of the scientific community regarding the microstructure of Israeli clouds and their cloud seeding potential.  Significant rain days in Israel are comprised of large complexes of convective clouds in various stages of development, “tangled masses,” as they were described by Neumann et al. (1967).  To their credit, Freud et al. informed the reader that they sampled only newly risen turrets when reporting the low (<2 per liter) modal ice particle concentrations in those turrets.

Freud et al.’s measurements could not have been more incompatible with uncited by B23 measurements of Levin (1992: 1994; Levin et al. 1996).  Tens to hundreds per liter of ice particles were found in six flights on four days in clouds having tops >-13°C.   Freud et al. 2015 could not bring themselves to inform their readers of similar high ice particle­­­ concentrations that they likely encountered during their 27 flights (that is, if they did not deliberately avoid those high ice particle concentration regions).  Freud et al. 2015, therefore, may be a first in the evaluation of cloud seeding potential in which measurements of ice particle concentrations in mature and aging clouds were not reported; the absence of such data made their entire report unreliable.

One of the B23 co-authors (DR) has claimed that ice particle measurements measured in their airborne research were “unreasonably high” in Israeli clouds due to probe caused shattering of ice crystals and thus weren’t reliable.  D. Axisa, a representative of the manufacturer, Droplet Measurement Systems, of the CAPS probe used by Freud et al. (2015) stated that this statement was false: “They could have reported accurate ice particle concentrations if they had wanted to.” Dr. Axisa is a former president of the Weather Modification Assoc.  It seems likely that HUJ researchers are once again withholding vital information on the clouds of Israel6.

  1. What do we know about cloud seeding in Israel today?

 What we know today is that if careful, skeptical and independent analyses of Israel-1 and Israel-2 experiments and equally careful evaluations of the clouds of Israel had been done in the first place by independent Israeli scientists or ones outside Israel that are non-partisan cloud seeding scientists (as was carried out by RH95a, R88, and by Silverman 2001), there would not have been 30 plus years of wasted operational cloud as would be found by independent evaluators in the decades ahead (Kessler et al. 2006, Sharon et al. 2008).  Fortunately, we need not guess whether those 10s of millions of dollars were wasted on the seeding of Lake Kinneret watersheds.  They were.   Inexplicably, the INWA drove through the “stop sign” presented by Kessler et al. (2006) and commercially seeded around Lake Kinneret for another seven years after this report came out according to B23.

  1. Why hasn’t cloud seeding worked In Israel?

 Answer:  too much natural ice formation in clouds.

B23 failed to mention that the “ripe-for-seeding” cloud foundation for the statistical results of Israel-1 and Israel-2 no longer exists.  The mythical clouds described by HUJ researchers were critical in the acceptance of the Israeli cloud seeding rain increases by the scientific community, as quoted in Kerr (1982) earlier and by Dennis (1989).

A review of the Israeli cloud microstructure shows that they are “ripe,” but not for cloud seeding, but for an explosion of ice as the tops ascend to temperatures below -5°C and age.  In most cases, precipitation-sized drops have already formed when the Israeli cloud ascend through this level (Gagin and Neumann 1974, Figure 13.4), and the concentration of cloud droplets exceeding the Hallett-Mossop riming-splintering criterion of >23 µm diameter can be inferred to be copious in that -2.5° to -8°C temperature zone.  Furthermore, there is an enhancement of the H-M process when droplets <13 µm are present (Goldsmith et al. 1976, Mossop 1985) and such drops would be present in the semi-polluted air masses; initially, shallow cold layers diluted by the warming of the Mediterranean Sea to depths of 3-9 km on shower/thunderstorm days by the time they reach Israel under cold polar troughs.

Without the “ripe for seeding” clouds, ones with great seeding potential to cloud top temperatures as low as -21°C as described by Gagin and Neumann (1976, 1981 and Gagin 1981), there can be no viable increases in rainfall due to cloud seeding.  This does not mean that some small, slightly supercooled clouds can’t be seeded to make small amounts of rain as noted by the HUJ researchers, Gagin and Neumann (1981), and by Sharon et al. (2008).  However, those small amounts weren’t deemed viable for a cloud seeding operations.

  1. The nature of the reporting of the experiments by the HUJ cloud seeding researchers

 The omission of the south target result (Gagin and Neumann 1976, 1981) was tantamount to the cancer researcher who only reports on the 50 mice his treatment cured while not reporting on the 50 mice that died from the same treatment.  This kind of behavior in virtually every field but weather modification/cloud seeding, would be termed, “scientific misconduct,” specifically of a type called, “falsification” when data are omitted or adjusted (Ben-Yehuda and Oliver-Lumerman 2017, Fraud and Misconduct in Research)6.  Inexplicably, Prof. K. Ruben Gabriel, the Israeli cloud seeding statistician, acquiesced in this omission as a reviewer of Gagin and Neumann’s 1981 paper in which this critical omission occurred.

Moreover, reporting the apparent negative effect on rainfall in the south target of Israel-2 would have raised numerous questions about the clouds of Israel:   How could seeding Israeli clouds, described as being filled with great seeding potential as had been repeatedly described by the HUJ researchers, have resulted in what appeared to be a large decrease in rainfall in the south target on seeded days?  Cloud tops in the south target in Israel average higher temperatures than those in the north (e.g., GN74; RH95a) making findings of decreased rainfall due to cloud seeding (as Rosenfeld 1989, Rosenfeld and Farbstein 1992 suggested) even harder to explain.

Moreover, while interim “positive” reports of cloud seeding increases in rain emanated from the HUJ during Israel-1 and Israel-2, HUJ researchers clearly felt differently about reporting indications of rain decreases in Israel-2 and Israel-3.   For example, the scientific community was not informed of the suggestion of decreased rain due to clouds seeding in Israel-3 by the HUJ experimenters until 17 years after randomized seeding had begun (Rosenfeld and Farbstein 1992).  Is this what the HUJ stands for?  This chronology demonstrates a pattern that HUJ experimenters have had reporting suggestions of decreased rainfall or null results due to cloud seeding and in correcting their flawed cloud microstructure reports to the scientific community and to their countrymen in the years prior to B23.

Moreover when “good draws” or null results are suggested, the HUJ researchers reach for the magic bag to explain why “cloud seeding did it,” not nature.  For example, when the Israel-1 chief meteorologist provided a plume analysis that the buffer zone (BZ) of Israel-1 could not have been appreciably contaminated by inadvertent seeding (a conclusion also supported by Neumann et al. 1967),  Gagin and Neumann (1974), however, countered with an opposite explanation; the BZ had surely been contaminated on Center seeded days.  The reason and data behind these two different explanations for the difference in the two plume analyses was not given except in general unsatisfactory terms.

When a Type I error and massive “good draw” affected the north seeded days of Israel-2 that also brought heavy rain to the south target, the crossover null result was then explained as due to “dust/haze” that produced different cloud microstructures when present in each target, first proposed by Rosenfeld (1989) in an HUJ report.

When RH95a showed that the results of seeding on the coast of Israel in Israel-1 were too close to the cloud base seeding release point to have resulted in rain practically falling on top on the seeding aircraft that flew in a line along the coast, Rosenfeld (1997) wrote a magical explanation filled with conjectures, one requiring nine steps to be fulfilled to explain the troublesome indication of rain increases in the BZ and in the coastal zone on Center seeded days.  Please see my extended “Reply,” p11, to the hypothesis of Rosenfeld (1997) at:

http://carg.atmos.washington.edu/sys/research/archive/1997_comments_seeding.pdf.

When the independent panel, Kessler et al. 2002, could find no viable increases in rain in the seeding of the Lake Kinneret watersheds in their interim report, the HUJ seeding team then asserted that “air pollution” was suddenly( after 1990) decreasing rain as much as cloud seeding was increasing it (Givati and Rosenfeld (2005).  One might ask, “what happened to ‘dust/haze’”?

Ice crystal concentrations measured in Israeli clouds by our best instruments are “unreasonably high” according to B23 co-author, Rosenfeld (private communication, 2018).  Rosenfeld’s statement, however, contrasts with that of Droplet Measurement Technologies (DMT), the manufacturer of the Cloud, Aerosol and Precipitation Spectrometer (CAPS) probe used by the HUJ researchers:  “They could have reported accurate ice particle concentrations if they had wanted to” (D. Axisa, DMT scientist, personal communication, 2018).

With the certainty of dust/haze days and incoming Israeli shower clouds affected by “sea spray” as Freud et al. 2015 described on shower days during the time the HUJ experimenters were flying their research aircraft in the early 1970s, monitoring storms with their radars, or examining rawinsondes during rain spells, we can conclude confidently that the lack of reporting on shallow precipitating clouds that occurred regularly in Israel is one of the more inexplicable and troubling aspects in the reporting of the Israeli cloud seeding experiments.

Deepening this enigma is that for two winter seasons in the late 1970s, the experimenters measured the depth of raining clouds with a vertically pointed 3-cm wavelength radar with research aircraft overflights to verify accuracy (Gagin 1980).  Dr. Rosenfeld, a B23 co-author who studied clouds and radar imagery at this time, is the sole living person who can tell us what happened (Rosenfeld 1980, master’s thesis).  One must necessarily ask if the HUJ experimenters discovered clouds they “didn’t like,” and withheld that information from us as they did the results of seeding in the south target of Israel-2?  Without conjuring up a stupefying degree of incompetence, it seems likely.

It is not science that we are dealing with concerning the reporting by the HUJ cloud seeding researchers.  There will ALWAYS be another problem that prevented seeding from working and if only corrected, seeding will work, as we are sure to learn when the inevitable “secondary” results of Israel-4 are published.

Will I be given a chance to review an Israeli cloud seeding manuscript as an expert in Israeli clouds, weather, and cloud seeding?  It seems unlikely with the journal atmosphere we have today.

  1. The on-going journal problem of “one-sided citing” as seen in B23; the equivalent of today’s “cancel culture” 

The omission of the work by myself and with Prof. Peter V. Hobbs was shocking to see in B23 since all the B23 authors knew of this work.  In human terms, external skeptics from a foreign country that expose faulty science in another country are not going to be exactly welcomed (or apparently cited) by that’s country’s scientists when a scientific embarrassment unfolds, as has happened in Israel concerning cloud seeding.  While this may seem like an outlandish claim, what happened could be interpreted as tinged with nationalism has previously been shown to obfuscate science (Broad and Wade 1982, p114).

For journal readers who are used to “one-sided citing” in partisan media, our scientific journals are supposed to be immune from these acts due to a peer-review “filter” that is supposed to eliminate this practice before an article reaches the publication stage.

        a).  Why do authors, like B23, tell only one side of the story?

In the words of Ben-Yehuda and Oliver-Lumerman (2017) of the HUJ,  such deceptions are, “…a deliberate attempt to create a false reality, persuade audiences that these realities are valid, and enjoy the benefits that accompany scientific revelations, whether those of prestige, money, reputation, or power….”  The effect of one-sided citing on journal readers is well expressed in the U. S. Federal Trade Commission’s (FTC) statement on consumer fraud:

“Certain elements undergird all deception casesFirst, there must be a representation, omission or practice that is likely to mislead the consumer [journal reader].”

For the reader, one-sided citing, if it is not obvious, is purposefully done by authors to hide results that they do not want you to see.  In effect, B23 performed the same act as Gagin and Neumann (1981) did when the latter authors did not report the results of random seeding of the south target of Israel-2, results that they did not want the world to see, and results that would have raised so many questions.

Regrettably, one-sided citing (a form of deception) is widely observed in Amer. Meteor. Soc. journals and in J. Weather Modification articles on cloud seeding/weather modification:

https://cloud-maven.com/journal-citing-practices-in-a-controversial-domain-cloud-seeding/

B23 practiced one-sided citing (defined by Schultz 2009) in their article concerning the Israel-1 and Israel-2 experiments.  Inexplicably, our groundbreaking work (e.g., R88, RH88, who pointed out how anomalous the Israeli cloud reports were compared to other clouds, and RH95a) went uncited by B23.   Our work, in toto, can be said to have anticipated the both the null result of decades of operational seeding of Lake Kinneret (Kessler et al. 2006, Sharon et al. 2008) and the null “primary” result of Israel-4 reported by B23.

B23 repeatedly misled/deceived readers, the “consumers” of journal science, concerning Israel-1 and Israel-2.   If there is something different than what was done by B23 than what is described by the FTC above its not apparent.

Nor did B23 cite Wurtele (1971), Silverman (2001) or mention the critical airborne cloud measurements by one of Israel’s own leading scientists, Levin 1992, 1994, and Levin et al. 1996).  The latter measurements were the first cloud ice measurements in Israel since Gagin (1975).  Those new, independently acquired cloud ice measurements supported the conclusions in R88, RH88, and those in RH95a, all which contravened the many HUJ experimenters’ fictitious reports of “ripe for seeding” clouds whose tops could ascend to ~-20°C without precipitating.

Later measurements of cloud properties via satellite would also confirm the independent cloud measurements and assessments; that the clouds of Israel formed precipitation far more readily and at much higher cloud top temperatures (Ramanathan et al. 2001) than the HUJ experimenters could discern over many decades.

In 2015, the HUJ cloud researchers discovered that “sea spray” in the Mediterranean makes the cumuliform clouds invading Israel precipitate more efficiently and at the high cloud top temperatures like those reported in R88 (Freud et al. 2015).  We can be quite sure that Mediterranean Sea spray has been occurring and affecting clouds that move into Israel for millions of years, and of course, did so during the 1970s when the HUJ scientists were performing their aircraft and radar cloud studies.  Yet, they could not detect, or did not report, on those clouds that would have erased most of their seeding potential.

The shame of one-sided citing in B23 is that the authors could have added a single sentence following their repeated claims of rain increases in Israel-1 and -2:  “However, these results, and the cloud reports that gave the statistical results credibility, have been questioned/overturned,” followed by a string of citations.

But B23 could not bring themselves to do that.

          b) Why should we care about one-sided citing?

 Knowledgeable readers of a specific topic like this writer will know that an article has been skewed to deliberately mislead readers due to omissions of contrary findings that go against what the authors assert.  But less informed readers will not know, and their knowledge will be truncated regarding an important public policy, as when their state or local government considers a­­­­ cloud seeding program.  They will want to know the unabridged findings about the Israeli experiences as a tale of caution about accepting claims by promoters of seeding that have not been closely scrutinized by outside experts.

Moreover, “one-sided citing” sullies the reputations of all the authors even those who may not have agreed with doing it, and likewise sullies the reputations of institutions represented by the authors who practice it by suggesting that those institutions do not uphold standard science practices by those who work there.   It also damages the authors whose work goes uncited since one’s impact in science is measured by citation metrics.  Finally, even the journal in which one-sided citing occurs can be considered to have been damaged since unreliable findings have been published in it.

Nevertheless, it would appear that reviewers, editors, and journal management do not care so much about this issue.  No statement in our Amer. Meteor. Soc. ethics statement addresses the question of the pernicious practice of one-sided citing as seen in B23.  Its intellectually dishonest to omit relevant findings for your science audience just because you don’t like them

              c) Who’s responsible for “one-sided” citing in        journals?

 “One-sided” citing, specifically as observed in B23, is due to poor peer reviews of manuscripts by seeding partisans or reviewers ignorant of the literature they are supposed to know.   However, it is also due to those that do know the literature but do not get those manuscripts to review.  For example, even though I would be deemed an expert on Israeli clouds, weather, cloud seeding, and on cloud microstructure, I was inexplicably not asked to review a manuscript in my specialty; that by B23 which would have made these comments unnecessary.

The reviewers of B23 manuscript were either ignorant of the literature they were supposed to be knowledgeable about or were cloud seeding partisans that also desired that the “other side” of the story for Israel-1 and Israel-2, as represented in the peer-reviewed literature by R88, RH88, RH95a, RH97a, b, c, d, e, Silverman (2001), Wurtele (1971) and Levin’s cloud measurements (e.g., Levin et al. 1996),  be hidden from the journal readers.

At the top of the “responsibility pyramid” for one sided citing in journal articles, however, must reside the editor of the journal who chose the reviewers that allowed this to happen.  Whomever this was at the J. Appl. Meteor. Climate, should not be allowed to be an editor who disburses cloud seeding manuscripts again.

        d) Concluding remarks on one-sided citing

 While all the B23 authors are technically responsible for its misleading content, one suspects some were likely “drug along” by stronger author personalities or authors who have funding power over them.  As is done in Geophys. Res. Letts., the actual contributions of each author to this article should have been listed so we can truly know who was responsible for providing one-sided histories for Israel-1 and Israel-2 and other misleading statements.

We know, too, seeding partisans at the HUJ that have cost their own country so much will not let the “primary” null result of B23 stand; there will be “secondary” and “tertiary” stratifications of Israel-4 data perhaps designed to mislead the INWA into another randomized cloud seeding experiment or to resume operational seeding of Lake Kinneret.

It will be critical that if a new experiment is conducted at the behest of the HUJ seeding partisans, that outside, independent experts conduct it!  It is also critical that prior to a new experiment that new airborne measurements of the clouds of Israel also be undertaken by outside, independent and experienced researchers in view of the problems that researchers at the HUJ have had over several decades, right up to today,  in reporting ice particle concentrations in their clouds and their clouds’ actual seeding potential.

The major question we must now confront to avoid further science mischief by HUJ cloud seeding researchers, is how was it that they were not aware of the natural state of their clouds, namely, that clouds with tops warmer than -10°C that regularly rained, a finding that seriously limits cloud seeding potential?   To date, no explanation has been put forward.  And what evidence will they skew or miss in a likewise manner in the inevitable Israel-4, “secondary” results article?

=========================

Lastly, a note of scientific etiquette for B23 and young researchers: B23 cite the work of French et al. (2018) in demonstrating cloud seeding efficacy via the use of mm-wavelength radar.

The first use of mm-wavelength radar of the type used by French et al. (2018) was used by the Cloud and Aerosol Group at the University of Washington in a “proof of concept” experiment (Hobbs et al. 1981).  Scientific etiquette means citing those that went first (Schultz 2009)   Thus, a citation to the Hobbs et al. (1981) article should have preceded that of French et al. 2018)8.   Our experiment proved that cloud seeding works in limited situations as in those described by French et al. (2018).

=================FOOTNOTES=====================

1The Israeli experiments have had several names over their history.  We use the latest terms for them here, e.g., Israel-1, etc.

2Pressure was applied in 1986 on the HUJ researchers by the Israeli experiments’, “Chief Meteorologist,” Mr. Karl Rosner, who began a letter writing campaign to have the important results of seeding in the south target published by Prof. Gagin.  Mr. Rosner told Professor Hobbs and myself in a Seattle visit that he felt that Prof. Gagin’s co-author, Jehuda Neumann, was “drug along” as a co-author of Gagin’s papers.

3This author believes that it is critical that a certified copy of the list of random decisions for Israel-2 be compared against those days used in the experiment.  The remarkably unlikely random draw described by Gabriel and Rosenfeld (1990) could be explained if the original list was violated by the experimenters: draws were made and assigned to  “seed” days when heavy storms were forecast.

4Rosenfeld (1989) in an unpublished HUJ report argued that the divergent apparent effects of cloud seeding were real.

5The findings of Kessler et al.  were challenged by seeding partisans at the HUJ and who claimed that “air pollution” had decreased rain as much as cloud seeding had increased it after 1990.  While this was a convenient explanation, it was not found credible by many subsequent independent investigators, including by Kessler et al. (2006).

6Ben-Yehuda and Oliver-Lumerman’s 2020 book, Fraud and Misconduct in Research, should be required reading for B23.  Ben-Yehuda and Oliver-Lummerman are professors at the HUJ.

7I suggested the use of our vertically pointed, mm-wavelength radar for cloud seeding use to Prof. Larry Radke and Peter Hobbs, after seeing virga signatures pass overhead of that radar, realizing that creating lines of seeding in supercooled cloud layers that passed over such a radar could prove the viability of cloud seeding in a new way.  I also carried out this experiment as flight scientist/meteorologist in the seeding/monitoring aircraft.  However, I was not credited for this idea by Prof. Hobbs in the Science article.

==================REFERENCES====================

Ben-Yehuda, N., and A. Oliver-Lumerman, 2020:  Fraud and Misconduct in Research.  University of Michigan Press, 266pp. No doi.

Benjamini, Y, A. Givati, P. Khain, Y. Levi, D. Rosenfeld, U. Shamir, A. Siegel, A. Zipori, B. Ziv, and D. M. Steinberg, 2023:  The Israel 4 Cloud Seeding Experiment: Primary Results.   J. Appl. Meteor. Climate, 62, 317-327.  https://doi.org/10.1175/JAMC-D-22-0077.1

Brier, G. W., and I. Enger, 1952: An analysis of the results of the 1951 cloud seeding operations in central Arizona.  Bull. Amer. Meteor. Soc., 23, 208-210.  https://doi.org/10.1175/1520-0477-33.5.208

  Broad, W. J., and N. Wade, 1982: Betrayers of the TruthFraud and Deceit in the Halls of Science. Simon and Schuster, 256pp. No doi.

Dennis, A. S., 1989: Editorial to the A. Gagin Memorial Issue of the J. Appl. Meteor., 28, 1013.

Foster, K. R., and P. W. Huber, 1997:  Judging Science: Scientific Knowledge and the Federal Courts.  The MIT Press, 333pp.   No doi.

French, J.R., Friedrich, K., Tessendorf, S.A., Rauber, R.M., Geerts, B., Rasmussen, R.M., Xue, L., Kunkel, M.L. and Blestrud, D.R., 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci., 115, 1168-1173.

https://doi.org/10.1073/pnas.1716995115

Freud, E., H. Koussevitsky, T. Goren, D. Rosenfeld, 2015:  Cloud microphysical background for the Israel-4 cloud seeding experiment.  Atmos. Res., 158-159, 122-138.  https://doi.org/10.1016/j.atmosres.2015.02.007

Gabriel, K. R., 1967a: The Israeli artificial rainfall stimulation experiment: statistical evaluation for the period 1961-1965. Vol. V., Proc. Fifth Berkeley Symp. on Mathematical Statistics and Probability, L. M. Le Cam and J. Neyman, eds., University of California Press, 91-113.

___________, 1967b:  Recent results of the Israeli artificial rainfall stimulation experiment.  J. Appl. Meteor., 6, 437-438.

            https://doi.org/10.1175/1520-0450(1967)006%3C0437:RROTIA%3E2.0.CO;2

____________, and R. Baras, 1970: The Israeli rainmaking experiment 1961-1967 final statistical tables and evaluation. Tech. Rep., Hebrew University, Jerusalem, 47pp. No doi.

_____________, and Rosenfeld, D., 1990: The second Israeli rainfall stimulation experiment: analysis of precipitation on both targets. J. Appl. Meteor., 29, 1055-1067.  https://doi.org/10.1175/1520-0450(1990)029%3C1055:TSIRSE%3E2.0.CO;2

Gagin, A. 1975: The ice phase in winter continental cumulus clouds. J. Atmos. Sci., 32, 1602-1614.  https://doi.org/10.1175/15200469(1975)032%3C1604:TIPIWC%3E2.0.CO;2

Gagin, A., 1980: The relationship between depth of cumuliform clouds and their raindrop characteristics. J. Rech. Atmos., 14, 409-422.  No doi.

Gagin, A., 1981: The Israeli rainfall enhancement experiments.  A physical overview. J. Wea. Mod., 13, 1-13.   https://doi.org/10.54782/jwm.v13i1.41

Gagin, A., 1986: Evaluation of “static” and “dynamic” seeding concepts through analyses of Israeli II and FACE-2 experiments. In Precipitation Enhancement–A Scientific Challenge, Meteor. Monog.,21, No. 43, Amer. Meteor. Soc., 63-70.

https://doi.org/10.1175/0065-9401-21.43.63

_______., and K. R. Gabriel, 1987: Analysis of recording gage data for the Israeli II experiment Part I: Effects of cloud seeding on the components of daily rainfall. J. Appl. Meteor., 26, 913-926.

 https://doi.org/10.1175/1520-0450(1987)026%3C0913:AORRDF%3E2.0.CO;2

_______, and J. Neumann, 1974: Rain stimulation and cloud physics in Israel. Climate and Weather Modification, W. N. Hess, Ed., Wiley and Sons, New York, 454-494. No doi.

_______, and _______, 1976: The second Israeli cloud seeding experiment–the effect of seeding on varying cloud populations.  Proc. 2nd WMO Scientific Conf. on Weather Modification, Boulder, 195–204.  World Meteor. Organization, 41 Ave. Giuseppe Moffs, Geneva 2, Switzerland.) No doi.

________, and ________, 1981: The second Israeli randomized cloud seeding experiment: evaluation of results. J. Appl. Meteor., 20, 1301-1311.

https://doi.org/10.1175/1520-0450(1981)020%3C1301:TSIRCS%3E2.0.CO;2

Givati, A., and Rosenfeld, D., 2005: Separation between cloud-seeding and air pollution effects. J. Appl. Meteor. Climate, 44, 1298-1314.

https://doi.org/10.1175/JAM2276.1

Goldsmith, P., Gloster, J., and C. Hume, 1976:  The ice phase in clouds.  Preprint Volume, Intern. Conf. on Cloud Physics, Boulder, Amer. Meteor. Soc., Boston, MA. 163-167.

Hobbs, P. V., and A. L. Rangno, 1978: A reanalysis of the Skagit cloud seeding project.  J. Appl. Meteor., 17, 1661–1666.

         https://doi.org/10.1175/1520-0450(1978)017%3C1661:AROTSC%3E2.0.CO;2

_________, and _________, 1979: Comments on the Climax randomized cloud seeding experiments.   J. Appl. Meteor., 18, 1233-1237.

     https://doi.org/10.1175/1520-0450(1979)018%3C1233:COTCAW%3E2.0.CO;2

_________, and __________, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 36, 2523-2549. https://doi.org/10.1175/1520-0469(1985)042%3C2523:IPCIC%3E2.0.CO;2

_________, and ___________, 1990: Rapid development of ice particle concentrations in small polar maritime cumuliform clouds. J. Atmos. Sci., 47, 2710-2722.

     https://doi.org/10.1175/1520-0469(1990)047%3C2710:RDOHIP%3E2.0.CO;2

 

_________, Lyons, J. H., Locatelli, J. D., Biswas, K. R., Radke, L. F., Weiss, R. W., Sr., and A. L. Rangno, 1981:  Radar detection of cloud-seeding effects.  Science, 213, 1250-1252.  https://doi.org/10.1126/science.213.4513.1250

Kerr, R. A., 1982: Cloud seeding: one success in 35 years.  Science, 217, 519–522.    https://doi.org/10.1126/science.217.4559.519

Kessler, A., A. Cohen, D. Sharon, 2006:  Analysis of the cloud seeding in northern Israel. A report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure, In Hebrew with an English abstract). 117pp.  No doi.

Koenig, L. R., 1963:  The glaciating behavior of small cumulonimbus clouds.  J. Atmos. Sci., 20, 29-47.

https://doi.org/10.1175/1520-0469(1963)020%3C0029:TGBOSC%3E2.0.CO;2

__________, 1977:  The rime-splintering hypothesis of cumulus glaciation examined using a field-of-flow cloud model.  Quart. J. Roy. Meteorol. Soc., 103, 585-606.

https://doi.org/10.1002/qj.49710343805

__________, 1984:  Further theoretical studies of the role of splintering in cumulus glaciation, Quart. J. Roy. Meteorol. Soc., 110, 1121-1141.

         https://doi.org/10.1002/qj.49711046621

Levin, Z., 1992: The role of large aerosols in the precipitation of the eastern Mediterranean. Paper presented at the Workshop on Cloud Microphysics and Applications to Global Change, Toronto. (Available from Dept. Atmos. Sci., University of Tel Aviv).  No doi.

_______, 1994:  The effects of aerosol composition on the development of rain in the eastern Mediterranean.  WMO Workshop on Cloud Microstructure and Applications to Global Change, Toronto, Ontario, Canada, World Meteor. Org., 115-120. No doi.

_______, E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean.  J. Appl. Meteor., 35, 1511-1523.

https://doi.org/10.1175/1520-0450(1996)035%3C1511:TEODPC%3E2.0.CO;2

_________., N. Halfon, and P. Alpert, 2010: Reassessment of rain enhancement experiments and operations in Israel including synoptic considerations.  Atmos. Res., 97, 513-525.

                        http://dx.doi.org/10.1016/j.atmosres.2010.06.011

MacCready, P., 1952: Results of cloud seeding in central Arizona, winter 1951.  Bull. Amer. Meteor. Soc., 23, 48-52.

Mason, B. J., 1982:  Personal Reflections on 35 Years of Cloud Seeding.  Contemp. Phys., 23, 311-327.  http://doi-org/10.1080/00107518208237084

Mossop, S. C., 1985: Secondary ice particle production during rime growth: the effect of drop size distribution and rimer velocity. Quart J. Roy. Meteor. Soc., 111, 1113-1124.       http://DOI-org/10.1002/qj.49711147012

National Research Council-National Academy of Sciences, 1973:  Weather and Climate Modification: Progress and Problems, T. F. Malone, Ed., Government Printing Office, Washington, D. C., 258 pp.

Neumann, J., K. R. Gabriel, and A. Gagin, 1967: Cloud seeding and cloud physics in Israel:  results and problems.  Proc. Intern. Conf. on Water for Peace.  Water for Peace, Vol. 2, 375-388.  No doi.

Nirel, R., and D. Rosenfeld, 1995: Estimation of the effect of operational seeding on rain amounts in Israel.  J. Appl. Meteor., 34, 2220-2229.

https://doi.org/10.1175/1520-0450(1995)034%3C2220:EOTEOO%3E2.0.CO;2

Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate and the hydrological cycle.  Science294, 2119-2124.

         https://doi-org/10.1126/science.1064034

___________, 1979:  A reanalysis of the Wolf Creek Pass cloud seeding experiment.   J. Appl. Meteor., 18, 579–605.

         https://doi.org/10.1175/1520-0450(1979)018%3C0579:AROTWC%3E2.0.CO;2

___________, 1986:  How good are our conceptual models of orographic clouds?  In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, Amer. Meteor. Soc., 115-124. (An invited paper.)     https://doi.org/10.1175/0065-9401-21.43.115

___________, 1988: Rain from clouds with tops warmer than -10 C in Israel.  Quart J. Roy. Meteor. Soc., 114, 495-513.

     https://doi-org/10.1002/qj.49711448011

__________, 2000:  Comment on “A review of cloud seeding experiments to enhance precipitation and some new prospects.” Bull. Amer. Meteor. Soc., 81, 583-585.  No doi

__________, and P. V. Hobbs, 1980a: Comments on “Randomized seeding in the San Juan mountains of Colorado.”  J. Appl. Meteor., 19, 346-350.

     https://doi.org/10.1175/1520-0450(1980)019%3C0346:COCSIT%3E2.0.CO;2

__________, and _________, 1980b: Comments on “Generalized criteria for seeding winter orographic clouds”.  J. Appl. Meteor., 19, 906-907.

    https://doi.org/10.1175/1520-0450(1980)019%3C0906:COCFSW%3E2.0.CO;2

__________, and _________, 1981: Comments on “Reanalysis of ‘Generalized criteria for seeding winter orographic clouds’”, J. Appl. Meteor., 20, 216.

https://doi.org/10.1175/1520-0450(1981)020%3C0216:COOCFS%3E2.0.CO;2

__________, and _________, 1983: Production of ice particles in clouds due to aircraft penetrations. J. Climate Appl. Meteor., 22, 214-232.

https://doi.org/10.1175/1520-0450(1983)022%3C0214:POIPIC%3E2.0.CO;2

__________, and _________, 1987: A re-evaluation of the Climax cloud seeding experiments using NOAA published data.  J. Climate Appl. Meteor., 26,  757-762.

         https://doi.org/10.1175/1520-0450(1987)026%3C0757:AROTCC%3E2.0.CO;2

__________, and _________, 1988: Criteria for the development of significant concentrations of ice particles in cumulus clouds.  Atmos. Res., 22, 1-13. No doi.

__________, and _________, 1991:  Ice particle concentrations in small, maritime polar cumuliform clouds. Quart J. Roy. Meteorol. Soc., 117, 207-241. https://doi.org/10.1002/qj.49711749710

__________, and _________, 1993: Further analyses of the Climax cloud-seeding experiments.  J. Appl. Meteor., 32, 1837-1847.

         https://doi.org/10.1175/1520-0469(1990)047%3C2710:RDOHIP%3E2.0.CO;2

­­__________, and _________, 1995:  A new look at the Israeli cloud seeding experiments.  J. Appl. Meteor., 34, 1169-1193.

https://doi.org/10.1175/1520-0450(1995)034%3C1169:ANLATI%3E2.0.CO;2

__________, and _________, 1997a: Reply to Rosenfeld.  J. Appl. Meteor., 36, 272-276.

https://doi.org/10.1175/1520-0450(1997)036%3C0272:R%3E2.0.CO;2

__________, and _________, 1997b: Comprehensive Reply to Rosenfeld, Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25pp.  http://carg.atmos.washington.edu/sys/research/archive/1997_comments_seeding.pdf

__________, and _________, 1997c: Reply to Dennis and Orville. J. Appl. Meteor., 36, 279. https://doi.org/10.1175/1520-0450(1997)036%3C0279:R%3E2.0.CO;2

__________, and _________, 1997d: Reply to Ben-Zvi. J. Appl. Meteor., 36, 257-259.

https://doi.org/10.1175/1520-0450(1997)036%3C0257:R%3E2.0.CO;2

__________, and _________, 1997e: Reply to Woodley. J. Appl. Meteor., 36, 253-254.

https://doi.org/10.1175/1520-0450(1997)036%3C0253:R%3E2.0.CO;2

 

___________, ___________, and L. F. Radke, 1977:  Tracer and diffusion and cloud microphysical studies in the American River basin.  Final Report to the Bureau of Reclamation, Final Report to the Division of Atmospheric Water Resources Management, Bureau of Reclamation, Contract 6-07-DR-20140), University of Washington, Seattle, WA, 98195.

(american_river_cloud.pdf

Rosenfeld, D., 1980:  Characteristics of Rain Cloud Systems in Israel Derived from Radar and Satellite Images.  M. S. Thesis, The Hebrew University of Jerusalem, 129pp. (Available from the Department of Meteorology, Hebrew University of Jerusalem, Jerusalem, Israel).

_________, 1989:  The divergent effects of cloud seeding uncer different physical conditions in Israeli 1 and 2 experiments.  Dept. Atmos. Sci., Hebrew University of Jerusalem, May 1989. No doi.

___________, 1998: The third Israeli randomized cloud seeding experiment in the south: evaluation of the results and review of all three experiments. Preprints, 14th Conf. on Planned and Inadvertent Wea. Modif., Everett, Amer. Meteor. Soc. 565-568. No doi.

Rosenfeld, D., and H. Farbstein, 1992: Possible influence of desert dust on seedability of clouds in Israel. J. Appl. Meteor., 31, 722-731.

https://doi.org/10.1175/1520-0450(1992)031%3C0722:PIODDO%3E2.0.CO;2

Schultz, D. M., 2009:  Eloquent Science:  A practical guide to becoming a better writer, speaker, and atmospheric scientist.  Amer. Meteor. Soc.  pp412.

Sharon, D., A. Kessler, A. Cohen, and E. Doveh, 2008:  The history and recent revision of Israel’s cloud seeding program.  Isr. J. Earth Sci., 57, 65-69.     https://DOI.org/10.1560/IJES.57.1.65.

Silverman, B. A., 2001: A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Amer. Meteor. Soc., 82, 903-923.

https://doi.org/10.1175/1520-0477(2001)082%3C0903:ACAOGS%3E2.3.CO;2

Wurtele, Z. S., 1971: Analysis of the Israeli cloud seeding experiment by means of concomitant meteorological variables. J. Appl. Meteor., 10, 1185-1192.

https://doi.org/10.1175/1520-0450(1971)010%3C1185:AOTICS%3E2.0.CO;2

Cloud Seeding and the Journal Barriers to Faulty Claims: Closing the Gaps

This manuscript had a close call in being accepted into the American Meteorological Society’s  Bull. Amer. Meteor. Soc. in 1998-1999.  The key reviewer that I had to satisfy (according to journal Editor  I. Abrams)  insisted that I make it clear that the cloud seeding experimenters in Colorado  and Israel did the “best they could with the tools available at that time”, paraphrasing here.

I couldn’t do it.

I had personal experience with the leaders of both those benchmark experiments; one was intransigent regarding new facts that upset a key claim he repeatedly made about the height of cloud tops in the Rockies during storms, and the other leader denied me access  to his radar to observe cloud top heights (and thus obtain temperatures).  I went to Israel suspecting that his many papers on the clouds of Israel were in major error.  (They were later proved to be in major error  on several occasions over the following 20 years.)

So, how could I agree with the key, “Reviewer B” stating that those experimenters did the best they could?  I might have “got in” by doing that.  Both cloud seeding leaders caused their respective country’s millions of dollars in wasted cloud seeding efforts.

An updated  “Gaps” manuscript was rejected a second time (!) in 2017 or so by the editor of the weather modification/cloud seeding issue of “Advances in Meteorology”, L. Xue, as “not the kind of paper we were looking for.”  Perhaps, though, it’s the kind of article YOU were looking for:

2017 Gaps-revised following comment

Review and Enhancement of “Literature Review and Scientific Synthesis on the Efficacy of Orographic Cloud Seeding”

PROLOGUE

Dr. Reynolds, the sole author of this monumental review I critique  has done a masterful job of surveying an enormous amount of cloud seeding literature in his “draft” report to his former employer, the Bureau of Reclamation.  The BOR was  the primary sponsor of cloud seeding programs throughout the West in the 1960s to the 1980s.  However, as was also seen in a recent review of the 2009 Springer book,  “Impacts of Aerosols on Precipitation,” such a task appears to be too much despite Reynold’s valiant efforts to “get it right.”   Reynold’s discussions of the benchmark randomized experiments in Colorado that led to the nation’s largest, most costly randomized orographic cloud seeding experiments, the Colorado River Basin Pilot Project, is an example of the problem of having too much to review and not enough time to scrutinize the details of so much literature.

Reynold’s review is well-written, most of the necessary citations are in it that help the reader to understand the topic.    That is,  except for those elements in his review that I am perhaps, a little too familiar with and I feel must be addressed in this VERY belated review of his 2015 draft report.

“Too familiar?”

That’s what happens to someone who has spent thousands of volunteer hours (crackpot alert!) rectifying faulty cloud seeding and cloud claims in peer-reviewed journal articles because he felt, “Someone has to do something about this!” (Second crackpot alert, with possible megalomaniacal implications).   I was employed as a weather forecaster for the Colorado River Basin Pilot Project for all of its five winter operating seasons, 1970/71 through 1974/75.  No one can know about that project and the faulty literature it was based on more than me.  I came in naive and idealistic about the scientific literature on cloud seeding;  I didn’t leave that way

I was not asked to review Reynold’s 2015  review before he posted his report to the BOR  online as a “draft,” the status it retains as of today.   I contacted Dr. Reynolds recently and informed him that I had a few comments on and corrections to his review.  He replied that he was not interested in correcting his review or making changes at this time.  This seemed odd to me, so here we are.

Also, in the spirit of “author disclosure,” I should mention that Dr. Reynolds was also an informal reviewer of my manuscript co-authored with Prof. Dave Schultz, Manchester U., on the history of the BOR-funded Colorado River Basin Project.  It was recently rejected by the J. Appl. Meteor.  due to length.  We are in the process of seeing where that manuscript can be trimmed down without losing  important parts of the story.

The comments pn Reynold’s review would have likely been unnecessary had I reviewed it beforehand, or if Dr. Reynolds  wished to consider my comments and corrections today.    I was well known to Dr. Reynolds as an expert on clouds, cloud seeding, and the weather  in Colorado and Israel ;  he had previously cited my work his 1988 article in the Bull. Amer. Meteor. Soc.   With Professor Peter V.  Hobbs in tow, I dissected those landmark experiments in Colorado and Israel and showed they were, as Foster and Huber (1997) described faulty science,  “scientific mirages.”  They were “low-hanging fruit” that poor peer reviews of manuscripts had let in, mostly, appearing Amer. Meteor. Soc. journals.  It didn’t take a genius to unravel them.

Dr. Reynold’s comprehensive  review can be found here.  It is too long to be a blog post here that includes my embedded comments.  Since I am only commenting on certain sections,  I have extracted only those portions of Reynold’s review where I have made comments.  It may be that only those familiar with this topic, orographic cloud seeding, will be interested, but, oh, well….  It has to be done even if for only ONE person!

My goal is to be objective and not short change Reynolds’ work on what is really an astounding effort.  It would take me two lifetimes to do what Dr. Reynolds has done.

I also believe Dr. Reynold’s made a great effort to be objective in discussing a topic that almost always brings controversy.  The literature in this field is filled with pro-seeding partisans that have often edited results so that cloud seeding has been presented with a happier face than it should have been.  After all, no one got a job saying cloud seeding doesn’t work (is not viable for producing worthwhile amounts of water.)

Considering his background in the cloud seeding arena, Reynolds final conclusion, copied below, must be considered an example of high integrity and his conclusion is one that this author fully agrees as of this date:

“5.3.2 Final Conclusion 

Based on both the historical evidence and the last decade of research, it is reasonable to conclude that artificial enhancement of winter snowpack over mountain barriers is possible. It is very difficult to quantify the seasonal increases to be expected both in snowpack and subsequent spring runoff. This is because each target area has to be investigated as to the meteorology of the winter clouds and their seedability, and the engineering aspects of effectively seeding the clouds to maximize increases. Winter orographic cloud seeding should thus continue to be supported both from the scientific and operational community working together to further the science and operational outcomes. It must be stated however, that as of yet, no rigorous scientific study conducted as a randomized confirmatory seeding experiment with pre-defined primary response variables and requiring an established threshold of statistical significance has demonstrated that seeding winter orographic clouds increases snowfall. As such, the “proof” the scientific community has been seeking for many decades is still not in hand. “

================THE REVIEW=================

My comments, corrections and question on Dr. Reynolds review begins below and are in a red font.   Highly relevant citations are missing  and there are citations in the Reynold’s references that do not appear in the text.  The missing ones, annotated with a “u” ,  have been added at the end of this review.

The portions of Reynold’s review that I examined begins here:

———————————————————————-

1.0 Introduction 

1.1. Introduction to Winter Orographic Cloud Seeding In its most basic form, artificial seeding of clouds for precipitation enhancement can be divided into two broad categories: 1 – cloud seeding to enhance rainfall i.e. summer convection, 2 – winter orographic cloud seeding to enhance snowfall. The scope of this paper is only concerned with the latter. Winter orographic cloud seeding occurs when very small particles, typically silver iodide, are introduced into a cloud which is below freezing. The cloud moisture collects onto the small particles, freezing the moisture into tiny ice crystals which continue to grow until they become too heavy to remain in the cloud and then fall out as precipitation (typically snow). This process can happen rapidly on the windward slopes of mountains allowing the snow to fall near the crest of the mountain which causes a local enhancement to the amount of precipitation that would have fallen naturally (Figure 1.1).

The situation is complicated if the natural crystals are becoming rimed and due to riming, fall more quickly.  Adding more ice crystals via cloud seeding may result in raising their trajectories by reducing riming and the snow may not be increased snow where it is wanted, or will evaporate in the descending, drying  air on the lee side.  The schematic below would be valid for naturally non-precipitating clouds.  

The properties of clouds that don’t naturally precipitate vary with location.  Maritime clouds along the west coasts of continents generally can precipitate without ice.  Farther inland, where the clouds become impacted by natural and anthropogenic aerosols, ice is generally required for precipitation and may not develop until cloud tops are cooler than about -12°C.  These latter non-precipitating clouds make viable seeding targets.

Figure 1.1 – Simple model of winter orographic cloud seeding. 1 – Introduction of seeding material, 2 forced ascent due to topography, 3 – enhanced precipitation falling out of cloud. 

1.3 Relevance and Need for a Reassessment of the Role of Winter Orographic Cloud Seeding to Enhance Water Supplies in the West 

Weather modification is most commonly conducted through “cloud seeding,” the introduction of chemical agents with the intent of affecting precipitation processes. A number of academic and private entities exist that offer services to states and local governments with the aim of increasing water supplies through inducing precipitation volumes above which would occur naturally. From the 1960s through the 1980s, Reclamation was involved in a variety of weather modification initiatives in the west under Project Skywater. This project included the Colorado River Basin Pilot Project, the High Plains Experiment (summer only), and the Sierra Cooperative Pilot Project. Project Skywater was terminated in 1988, but Reclamation continued to be involved with weather modification efforts. Reclamation participated in the development of the California Department of Water Resource’s design and conduct of the Oroville Reservoir Runoff Enhancement Project from 1988 until 1994. Reclamation also supported other efforts through the mid-2000s, including the Weather Damage Modification Program. 

Based upon scientific literature through 2006 and discussions with experts in the field, the efficacy of weather modification appears to be unsettled. In 2003, the National Research Council (NRC) report “Critical Issues in Weather Modification Research” (NRC 2003), concluded that “there is still no convincing scientific proof of the efficacy of intentional weather modification efforts”. The NRC goes on to state that new technology allows for potential new research to help understand the process of precipitation and if weather modification is a viable means to increase water supplies. 

The NRC 2003 review of cloud seeding cited above  did not measure up to the one the NRC published in 1973.  I reviewed NRC 2003.  If anyone cares, can be found here:         

 A Critical Review of NRC 2003 Critical issues in weather modification NATIONAL ACADEMIES PRESS

As seems to be typical of reviews, there was just too much literature to review for the scientists involved, and also likely, not a top priority for those assigned to this task having other research on their plates.   Prof. Hobbs, with my acquiescence, helped compromise this review by declining an offer by Prof. Garstang, chair of the review committee, to review before it was published, a huge mistake.  Garstang admonished  Peter to not to comment on it AFTER it came out.  But that’s exactly what Peter told me we would do if needed.  I nodded and went back to my desk.  He said we would have “more impact” by doing that.  I hope you appreciate getting stories from behind the scenes.

In 2002-2003, Reclamation funded, through earmarks, weather modification studies in the states of Nevada, Utah, California, North Dakota, and Texas. The studies did not provide convincing scientific evidence that weather modification reliably generates additional water. However, there are a number of studies, including from within Reclamation (Hunter 2004 – cited within LBAO (Lahontan Basin Area Office) EA discussed later), that indicate that cloud seeding can significantly increase precipitation amounts for targeted locations. 

Statement on the Application of Winter Orographic Cloud Seeding For Water Supply and Energy Production 

In 2005, Reclamation primarily stopped involvement in weather modification efforts at the program level. As identified within Q&As developed by the Research and Development Office explaining Reclamations abandonment of the practice: 

•Weather modification is not an operational function of Reclamation.

•In a letter dated December 13, 2005, sent to then-Texas Senator Kay Bailey Hutchison(R), the White House Office of Science and Technology Policy (OSTP) said there aresignificant concerns about liability and legal ramifications of weather modification,including whether weather modification can be demonstrated to actually be effective.

Since 2006, continuing drought conditions, and a strong interest amongst some Reclamation stakeholders, Reclamation engaged in two research projects related to weather modification in support of cold-season snowfall enhancement. 

•In 2010 the Mid-Pacific Region’s LBAO finalized an Environmental Assessment (LBAOEA) proposing to provide $1.35 million from Reclamation’s Desert Terminal LakesProgram to the Desert Research Institute (DRI) for a cloud seeding project in the WalkerRiver Basin.

•At a March 12, 2014 meeting of the Upper Colorado River Commission, weather modification was specifically identified as one of three activities that the Upper Basin states propose to include within their drought contingency plans. The Upper Basin states asked that Reclamation provide partial support for Wyoming’s eighth year (2014) of an ongoing weather modification study / program being conducted with the National Center for Atmospheric Research (NCAR). This request resulted in Reclamation’s Upper Colorado Region obligating $200,000 to the State of Wyoming for weather modification research and development efforts conducted by NCAR, with these monies obligated through an amendment to an existing cooperative agreement between Reclamation R&D and Universities Corporation for Atmospheric Research.

The Upper Basin states have noted that state and private entities in Colorado and Utah spend over $1M and $500,000 respectively on weather modification, and estimate efficacy between 6% and 20%. At the low end, the Upper Basin states identify that a benefit of 6% is inexpensive water within the Colorado River Basin. The Upper Basin states have argued that Reclamation’s documents from the 1960s – 1980s identified positive results of weather modification.

This above section needs supporting references for the assertions made about seeding results, the benefit claim, and who are those “Upper Basin States”?  Otherwise these statements should be taken with extra caution.

1.5 Brief History of Federal and State Authorizations for Weather Modification 

The following is taken from Chisolm and Grimes (1979): 

In 1968, the Colorado River Basin Project Act of 1968 (Public Law 90-537) was passed by Congress to provide for the further comprehensive development of water resources of the Colorado River Basin and for the provision of additional and adequate water supplies for use in the upper as well as lower Colorado River Basin. Under Title II of this Act, the Secretary of the Interior was authorized to prepare and implement an augmentation plan to meet the water requirements of the new projects created by the Act (Central Arizona Project and Colorado River Storage Project), existing projects and water allotments, and the 1944 water treaty with Mexico. 

Augmentation was one of the main issues in the deliberation on the Act. The Act defines augmentation as, “ ‘augment’ or ‘augmentation’ when used herein with reference to water means to increase supply of the Colorado River system or its tributaries by introduction of water into the Colorado River system, which is in addition to the natural supply of the system.” The Statement of the Managers on the part of the House with regard to augmentation stated “all possible sources of water must be considered, including water conservation and salvage, weather modification, desalinization and importation from areas of surplus.”

The Colorado River Basin Pilot Project (CRBPP) was the Bureau’s first major effort on weather modification in Colorado under the auspices of Project Skywater and P. L. 90-537. The purpose of the Colorado River Basin Pilot Project was to provide for scientific and economic evaluation of precipitation augmentation technology and to increase precipitation. The specific objectives to be achieved were (l) to establish and operate a ground-based meteorological network in and near the San Juan Mountains of Colorado to provide data input in the selection of suitable storms for seeding, and (2) to establish and operate a ground-based silver iodide seeding system to increase snowfall in the project target area. The field phase of CRBPP began with the winter of 1969-1970 (installation of gauges and seeding generator siting) while the random seeding phase began with the 1970-71 season and ran through the 1974-75 season (not the 1973-74 season as the author stated).

Date corrections are needed from the original text, not a good sign of the author’s knowledge concerning the CRBPP.  What is incomprehensible is that the goal of replicating the large percentage increases in snowfall reported in three randomized experiments by the author’s former home institution, Colorado State University, is left out of this rationale for the CRBPP.  Surely, the author knew, also as a long term BOR cloud seeding division employee, that those experiments were the primary motivation for the BOR to spend $40-50 million (in 2023 dollars) on the CRBPP.

At about the time of completion of CRBPP in Colorado, the Bureau began funding Project Snowman in Utah. Project Snowman was conducted for the Bureau by Utah State University’s Water Research Laboratory. The objective of this four-year project was to develop cold-cloud seeding technology using airborne generators and ground-based generators located in the northern portion of the Wasatch Mountains.

References are also needed here.

The Bureau’s early work on precipitation augmentation in Colorado was based on a fairly extensive background of research activities. Three major research efforts in winter seeding contributed directly to the Bureau’s CRBPP project in the Upper Colorado River Basin. These were: 

  1. The National Science Foundation sponsored research experiments by Colorado State University at Climax, Colorado, during the 1960’s.

“1” above is not a sufficient description of the motivation for the CRBPP.  The Climax experiments were reported on numerous occasions in the peer-reviewed literature as cloud seeding successes when air mass temperatures were high (i. e., high 500 hPa and 700 hPa equivalent temperatures as by Grant and Mielke 1967u, Kahan et al. 1969u, Grant et al. 1969u, Mielke et al. 1970u, 1971u, among others).  The BOR had a LOT of peer-reviewed evidence on which to base the CRBPP and in particular, in the Grant et al. 1969u Interim Report to the BOR that described the results of the Climax I results, and the preliminary results of Climax II and the Wolf Creek Pass experiments.  The findings in these three experiments, as described by Grant et al. 1969u,  were remarkably supportive of one another.  Climax II was a confirmatory experiment; nothing was changed from Climax I.

2. The operational research funded by the State of Colorado during the 1960′ s at several mountain passes, particularly Wolf Creek Pass in the San Juan Mountains, and,

The Wolf Creek Pass experiment mentioned above was a six winter season,  fully RANDOMIZED  experiment where entire winter seasons were randomized.  This experiment was critical to where the CRBPP was located since it appeared to have produced more water than seeding had in northern Colorado where the Climax experiments took place.

3. The Bureau sponsored experiments in the Park Range near Steamboat Springs, Coloradoduring the late 1960’s.

Rhea et al.’s 1969u “Final Report” to the  BOR concerning the Park Range Project  is eventually cited by Reynold’s, but is not in Reynold’s references.  This report was a “heads up” on all the problems that would be “rediscovered” during the CRBPP (e.g, as reported in Willis and Rangno 1971u).

The results of the Colorado River Pilot Project indicated the need for further verification and improvement in technology before a large augmentation program could be undertaken again.

This is a vague description of the CRBPP results, perhaps intentionally so. Why not just say what happened for the reader right here in plain language?   “The results of the earlier CSU experiments could not be replicated in the CRBPP (Elliott et al. 1978u followed by a citation to the “Comments” on Elliott et al’s findings by Rangno and Hobbs 1980-the latter reference is contained in Reynold’s references but is not discussed in his review.   Later, it was discovered that those early optimistic CSU results and the microphysical foundation on which they rested on were all ersatz leaving no real basis for the CRBPP  (e.g., Mielke 1979u, Rangno 1979u, Hobbs and Rangno 1979u, Rhea 1983, Rangno and Hobbs 1987u, 1993, 1995a, u)”

The Wolf Creek Pass seeding effort was designed to test whether a viable signal in runoff from Wolf Creek Pass could be produced by seeding all winter.  The Wolf Creek Pass experiment, conducted from the winters of 1964/65 through 1969/70 produced stunning results when the three randomly chosen seeded seasons were compared with the long historical runoff record (Grant et al. 1969u, Morel-Seytoux and Saheli 1973u).  Furthermore, the results of seeding on  individual days during the seeded winters appeared to replicate the results of Climax I.  It doesn’t get any better than this for a trifecta of apparent cloud seeding successes!  

But, it was all a mirage (e.g., Rangno 1979u), which makes this story so interesting from a scientific viewpoint.

Thus, the Bureau’s research program continued.

Winter experiments were conducted outside of the Colorado River Basin at: Elk Mountain, Wyoming (University of Wyoming) Bridger Range, Montana (Montana State University) Jemez Mountains, New Mexico (New Mexico State University) Pyramid Lake Pilot Project (University of Nevada) In addition, the Bureau continued to provide supplemental funds to Colorado State University’s NSF research and to Utah State University’s state -sponsored research project. Through the Emergency Drought Act of 1977 the Bureau granted over $2 million to six states for supplemental support of their cloud seeding projects including over $1 million to the States of Colorado and Utah for cloud seeding in the Colorado River Basin. 

1.6 Current Policy Statements from American Meteorological Society and World Meteorological Organization on Efficacy of Winter Orographic Cloud Seeding 

The two leading organizations representing the atmospheric science scientific establishment, the World Meteorological Organization and the American Meteorological Society, have both issued policy statements on the efficacy of winter orographic cloud seeding. These are relevant to review given the NRC 2003 conclusions. 

The current statement from the World Meteorological Organization (WMO 2010) on weather modification in general and relating specifically to winter orographic cloud seeding efficacy is stated below. 

“The scientific status of weather modification, while steadily improving, still reflects limitations in the detailed understanding of cloud microphysics and precipitation formation, as well as inadequacies in accurate precipitation measurement. Governments and scientific institutions are urged to substantially increase their efforts in basic physics and chemistry research related to weather modification and related programmes in weather modification. Further testing and evaluation of physical concepts and seeding strategies are critically important. The acceptance of weather modification can only be improved by increasing the numbers of well executed experiments and building the base of positive scientific results.” 

“Cloud seeding has been used on both cold clouds, in which glaciogenic seeding aims to induce ice-phase precipitation, and warm clouds, where hygroscopic seeding aims to promote coalescence of water droplets. There is statistical evidence, supported by some observations, of precipitation enhancement from glaciogenic seeding of orographic supercooled liquid and mixed-phase clouds and of some clouds associated with frontal systems that contain supercooled liquid water. “ 

The current AMS policy statement (AMS 2010) does not address specifically the efficacy of winter orographic cloud seeding but much like the NRC 2003 report identifies uncertainty and risk with much the same conclusions. These are listed below. 

UNCERTAINTY – Planned weather modification programs benefit from a comprehensive understanding of the physical processes responsible for desired modification effects. Recent improvements in the composition and techniques for dispersion of seeding agents, observational technology, numerical cloud models, and in physical understanding of cloud processes permit evermore detailed design and targeting of planned weather modification effects, and more accurate specification of the range of anticipated responses. While effects are often immediately evident in simple situations, such as when cloud seeding is used to clear supercooled fog and low stratus cloud decks, in more complex cloud systems it is often difficult to determine a seeding effect on a cloud-by-cloud basis. In these more complex situations, large numbers of events must be analyzed to separate the response to cloud seeding from natural variability in cloud behavior. Rigorous attention to evaluation of both operational and research programs is needed to help develop more effective procedures and to improve understanding of the effects of cloud seeding. Research and operational programs should be designed in a way that will allow their physical and statistical evaluation. Any statistical assessment must be accompanied by physical evaluation to confirm that the statistical results can be attributed to the seeding through a well-understood chain of physical events. It should be noted, though, that in practice large potential benefits can warrant relatively small investments to conduct operational cloud seeding despite some uncertainty in the outcome. 

The text in blue font seems like PR, Dave, and should be updated due to the lack of proof of seeding induced increases in snow we now have. Neiburger (1969u, WMO Tech Note) warned that such thinking usually excludes the idea that seeding might result in decreases in precipitation in addition to mistargeting, faulty operations.  

1969 CLOUD SEEDING REVIEWS MORRIS NEIBURGER ocr

RISK MANAGEMENT – Unintended consequences of cloud seeding, such as changes in precipitation or other environmental impacts downwind of a target area, have not been clearly demonstrated, but neither can they be ruled out. In addition, cloud seeding materials may not always be successfully targeted and may cause their intended effects in an area different than the desired target area. This brings us to the ethical concern that activities conducted for the benefit of some may have an undesirable impact on others; weather modification programs should be designed to minimize negative impacts.. At times unintended effects may cross political boundaries, so international cooperation may be needed in some regions. Precipitation augmentation through cloud seeding should be viewed cautiously as a drought-relief measure because opportunities to increase precipitation are reduced during droughts. A program of precipitation augmentation is more effective in cushioning the impact of drought if it is used as part of a water management strategy on a long-term basis, with continuity from year to year, whenever opportunities exist to build soil moisture, to improve cropland, and to increase water in storage. From time to time methods have been proposed for modifying extreme weather phenomena, such as seeding severe thunderstorms with aerosols to diminish tornado intensity, or seeding tropical cyclones to cause changes in their dynamics and steer them away from land and/or diminish their intensity. Some experimentation has taken place in these areas, but current knowledge of these complex weather systems is limited, and the physical basis by which seeding might influence their evolution is not well understood. Weather modification techniques other than cloud seeding have been used in various areas of the world for short periods of time to achieve goals similar to those of cloud seeding. Much less is known about the effects of these other techniques, and their scientific basis is even further from being demonstrated, either statistically or physically, than it is for cloud seeding. Application of weather modification methods that are not supported by statistically positive results combined with a well-understood physical chain of processes leading to these results, and that can also be replicated by numerical cloud modeling, should be discouraged.

Other organizations such as the North American Interstate Weather Modification Council, The Weather Modification Association, the American Society of Civil Engineers, and the Western States Water Council have also adopted policy statements or adopted resolutions relating to the use of weather modification for increasing snowpack and water supply. These are referenced in Ryan (2005) and will not be repeated here. Most if not all of these statements are much more positive in their support of the application of weather modification for enhancing snowpack and runoff despite the lack of evidence as reported in NRC 2003.

To the uninitiated reader to the field of weather modification/cloud seeding, it will seem odd that there are government entities that will pay huge sums of tax payer monies for cloud seeding with no viable evidence that it does anything, evidence being in the form of randomized experiments, the “gold standard” of scientific proof.  

Why would those entities take such chances?  

If you haven’t guessed by now, it’s because those government entities are telling their constituents directly or implicitly that they are doing SOMETHING about a drought.  It’s a great ploy, and usually works except in the minds of those who know the science.  

What science?  

Two modern randomized experiments testing to see if cloud seeding can increase precipitation in mountainous regions (Wyoming and in northern Israel) ended with  no indications that cloud seeding increased precipitation.  These null findings have been published by Rasmussen et al. 2018u for Wyoming, and by Benjamini et al. 2023u for Israel.  Now you know.  

Did the “null” finding reported by Rasmussen et al. 2018 terminate cloud seeding in Wyoming?  Of course  not.  It just looks too good to the public that you’re doing something about water needs.  

1.7 Generalized Concepts of Winter Orographic Cloud Seeding 

It is useful to review the general principles of winter orographic snowfall and whether this process could be modified or enhanced by artificial means. The basic physical concepts associated with seeding winter orographic clouds are not debated even though there is considerable debate over weather modification and its efficacy. These basic physical concepts are reviewed in the following section. There are several text books and encyclopedia articles available for a more in-depth discussion or broader overview of the physical basis of cloud seeding (Hess 1974; Dennis 1980; Dennis 1987; and Heymsfield 1992). 

Dennis in his (1980) Academy Press book, “Weather Modification by Cloud Seeding,” relied heavily on the 1977 BOR Monograph Number 1 (yes, it was deemed that important by the BOR to name it as NUMBER ONE),  became outdated almost immediately when external critics (guess who?) found serious flaws in that “meta-analysis.”     The BOR study, published in 1978u (Vardiman and Moore) was retracted in 1980  by Rottner et al. 1980 as critical “Comments” on their paper by, yep, Rangno and Hobbs (1980) were being published.  Thus, Dennis (1980) might be reconsidered as a reference here.  The BOR was too willing to believe in cloud seeding success mirages that led to this major embarrassment.

Too, much of the cloud seeding literature in Hess (1974) has been overturned in reanalyses or has not been replicated, as in the recent Wyoming and Israel experiments.  But, “hey,” you can read about global cooling in Hess (1974), thought to be underway at that time.

Figure 1.2 from Ludlam (1955), reproduced below, describes the process that remains to this day the fundamental conceptual model associated with winter orographic cloud seeding. Figure 1.2 shows a shallow orographic cloud, where the liquid condensate produced by forced assent over a mountain barrier is unable to be converted to snowfall before the air descends and evaporates in the lee of the mountain. During wintertime the freezing level (height of the 0oC isotherm) varies dependent on the origin of the air mass impinging on the mountain barrier.  This varies from north to south with the freezing level being lower in altitude at the northern latitudes of the western US and the inter-mountain west where the air masses that impact this area are usually modified maritime polar or continental polar.

and height allowing the crystals to grow at the expense of the cloud water that in (a) was lost to the lee, bringing this moisture down on the windward side of the mountain.

1.2a is the non-precipitating cloud that forms the low, demonstrable end of seeding potential.

The text in blue in the body of the paragraph may be true, but….. warm air masses during times of upper level ridges along the West Coast shunt warm air mass storms into the central and northern Rockies, so this “paradigm” often does not hold.  Surface temperatures may be well below freezing, but much higher temperatures usually exist aloft in those warm aloft regions of winter storms.  The Climax I experiment, for example, had numerous warm aloft storms overrunning colder air with west-northwest flow due to this synoptic scenario.   Quantification of this claim would have been very informative and would have pinned it down for the reader…and me!

Freezing levels are usually below ground level in mountainous regions except in the warmest storms. In the Ludlum model, it is assumed the orographic cloud has a significant depth of cloud below 0 oC and thus the cloud moisture is said to be supercooled. The critical uncertainty with regard to successful conversion of the unused cloud condensate to snowfall prior to passing over the crest is the location, duration, temperature and concentration of the supercooled liquid water (SLW).

As Ludlum describes it may take as much as 1500 seconds once artificial ice crystals are initiated to grow and fall out before passing to the lee of the mountain crest.  This can vary by several tens of minutes based on SLW concentration, temperature vertical profile and winds.

The process of crystal growth is almost always much fast than “as much as” 25 minutes to fallout cited by Ludlum  (e.g., Auer et al. 1969, Cooper and Vali 1981).

So the critical factors for achieving success are getting the seeding agent into the cloud at the right location where it will generate enough ice embryos such that they will utilize the available SLW prior to passing over the crest. There are many complex interactions that have made it very difficult to demonstrate the efficacy of winter orographic cloud seeding to the satisfaction of the scientific community. These factors are described in the following paragraphs. 

So true.

 1.7.1 The Initiation, Growth and Fallout of Snow in Winter Orographic Clouds 1.7.1.1 Converting Supercooled Liquid Water (SLW) to Snow

Supercooled liquid water (SLW) in the atmosphere is made up of tiny cloud droplets that are colder than 0 oC. There are two processes in nature by which SLW in the atmosphere can freeze to initiate snowfall: 1. Heterogeneous nucleation or 2. Homogeneous nucleation. Heterogeneous nucleation occurs when the supercooled liquid drop comes in contact with what is called an ice nucleus (IN) that emulates the crystalline structure of ice and causes the droplet to freeze. These can be dust particles, biological particles or a combination of the two. These aerosols can come from as far away as Asia and Africa initiating cloud ice in orographic clouds in the western US (Cremean et al. 2013). They are made of very small particles of tenths of microns in size. They are most active at cloud top and tend to activate the growth of snowflakes from the top of the cloud down. The warmer the cloud top the less percentage of ice makes up the cloud (Cremean et al. 2013).

Sidebar:  An interesting feature, first observed in the 1950s (e.g., Cunningham 1957u) and afterward was the “upside down” storm structure where few ice crystals were found at low cloud top temperatures consisting mostly of supercooled liquid water with increasing ice crystal concentrations below the top. The increasing concentrations of ice crystals were mostly due to the fragmentation of delicate ice crystals. The most recent description of this scenario was by Rauber and Tokay (1991u) and Hobbs and Rangno (1985).

Lower down, within a km of the surface, ground observations have shown that riming and and aggregation occur that increase snowfall rates. This lower region near mountains cannot be sampled by aircraft if precipitation is falling and as a result, has mainly been documented  in ground observations (e.g, Hobbs 1975). Thus, aircraft observations can often be seen as under measuring ice particle concentrations in mountainous regions.  For example, we at the University of Washington often overflew shallow orographic clouds with liquid tops at >-10C with snow falling out underneath, but we couldn’t sample them because the tops were too close to the tops of the Cascade Mountains.

When clouds are dominated by warm rain processes, the aerosol makeup of the cloud is more sea salt and biological particles which act as condensation nuclei producing larger cloud droplets which grow to raindrops via collision coalescence. Homogeneous nucleation occurs when the air temperature drops below -40 oC and the water droplet spontaneously freezes without the aid of a nucleating agent. The most basic hypothesis in winter orographic cloud seeding is that in the presence of SLW droplets, ice crystals will grow at the expense of the drops. This means the drops will convert back to vapor allowing the crystals to grow by vapor deposition unless too many ice crystals have resulted from seeding in which case they might not grow at all. The driver for crystal growth is related to the concentration of SLW and the temperature regime of the SLW (Ryan et al. 1976; Heymsfield 1992; Pruppacher and Klett 1978).

In the presence of moderately high concentrations of SLW and with somewhat preferred growth temperatures (Ryan et al. 1976, Figure 1.3) enough of the initial ice crystals can grow and then begin to aggregate into larger flakes leading to higher fall speeds and earlier fall-out. If these artificial crystals encounter additional SLW as they fall back toward the mountain crest, the individual crystals or aggregates may collect these SLW drops (called riming) which will also increase the crystals fall-speed. If the naturally created ice crystals are unable to utilize all the available SLW, and some SLW evaporates to the lee of the mountain, the cloud is said to be less than 100% efficient. This provides the opportunity for the artificial injection of a nucleating agent to create the additional ice crystals necessary to bring the residual cloud water to the ground before it is lost to the lee of the mountain. This is the basic principles described in Ludlam’s model. 

Aerial Seeding window 

Ground based seeding temperatures 

General seeding window based on Figure 1.5 and observed SLW 

As Super and Heimbach (2005) noted, the frequency of occurrence of SLW is temperature dependent with higher frequencies and amounts at (higher) supercooled temperatures. This is true for all mountain ranges where SLW has been observed. There are two main reasons for this. First, the amount of water vapor in the atmosphere can be higher at warmer (higher) temperatures. Second, as the atmosphere cools and clouds form and reach temperatures lower than -10 oC, and especially at -20 oC, an abundance of natural ice can occur that depletes the supercooled cloud water. Thus, there is less SLW available for cloud seeding to enhance the natural precipitation process as the air approaches these temperatures. It should be noted that studies (Reinking et al. 2000; Super 2005) have found significantly higher amounts of SLW (.5 to 1 mm integrated SLW) in wave clouds during winter storms and noted that others had observed such amounts during brief periods in other western mountain locations. However, the overwhelming amount of observations utilizing microwave radiometers (Heggli and Rauber 1988; Huggins 2009; Super and Heimbach 2005), in-situ aircraft observations, and mountain top icing rate meters indicate that SLW is concentrated in the lowest 1000m along the windward slopes of mountain ranges during passing winter storms. The primary SLW zone rapidly dissipates downwind of the crest because of warming produced by subsidence and by depletion from conversion to snowfall (Boe and Super 1986; Rauber et al. 1986; Rangno 1986 (the rapid dissipation of SLW, one of my main points), Huggins 1995; Super 2005; Huggins 2009).  There are observations that confirm the simple conceptual model espoused by Ludlam when natural ice does not form. The location of many of the research studies referenced in this report along with other locations that will be referenced later in this report are shown in Figure 1.4b. One can compare these locations to Figure 1.4a which shows the location where operational winter orographic cloud seeding is conducted circa 2006 per Griffith et al. 2006. Coastally influenced areas would be west of the Sierra Nevada and Cascades while the intermountain region refers to areas east of these two ranges. 

The actual temperature relationship to SLW occurrence varies geographically. For the intermountain west, where the cloud drop size distributions are more numerous at the smaller drop sizes (10 to 15 microns; what is referred to as a continental drop size distribution), lower temperatures are reached before a sufficient number of natural ice crystals develop to utilize the available SLW. Thus, SLW can exist, at least briefly, at temperatures as low as -15 to -20 oC. Super and Heimbach (2005) provide a comprehensive review of SLW climatology in the intermountain west. 

In more coastal regions, such as the Sierra Nevada and Cascades, the drop size distribution can be broad (what is referred to as a maritime drop size distribution). The drops can begin to collide and coalesce because of the varying fall speeds of the drops with a broader distribution of cloud droplets (extending into and above 30 microns diameter). This leads to larger cloud drops (approaching drizzle size) that can be carried upslope into coastal mountains like the Cascades and Sierra Nevada ranges where just a few of these droplets can freeze leading to rime splintering or secondary ice-crystal production (Hallett and Mossop 1974; Dong and Hallett 1989; Mossop 1985). This can, and has been observed to lead to high concentrations of ice crystals with cloud temperatures warmer than -10 oC (Reinking 1978; Cooper 1986; Marwitz 1986; Hobbs and Rangno 1985; Rauber 1992).

Nieman et al 2005u reported  occurrences of the “warm rain” process in Northern California and Oregon were common.  Will cloud seeding increase precipitation if nature is providing rain via collisions with coalescence?

Other factors (Rango  (sic) 1986) can lead to high ice crystal concentrations with relatively high cloud top temperatures. Mixing of very dry air into cloud tops can initiate cloud droplet freezing (e.g., Koenig 1968; Hobbs and Rangno 1985). This has been observed in the Cascades, Sierra Nevada and southern Utah. In the post-frontal airmass, where most of the shallow orographic clouds exist, very dry air can exist above cloud top. This is caused by sinking air parcels in the region behind the upper-level jet-stream that usually passes just ahead of the surface cold front  (Heggli and Reynolds 1985). Thus the coastal mountain clouds will have a lesser degree of supercooling, meaning that the clouds will be only marginally supercooled as natural ice production will utilize the available SLW within moderately supercooled clouds. Reynolds (1995) documented that over an 8 year period in the northern Sierra Nevada, 80% of the hours reporting SLW from mountain-top icing rate meters were at temperatures warmer than -4 oC. Reynolds (1996) also reported that 70% of the hours with precipitation had icing (riming?) reported. Approximately 300 hours of icing were reported per season. However, some seasons had average temperatures during icing warmer than -2 oC which may be too warm for any known seeding agent to work effectively unless seeded aloft using aerial seeding. Studies examining mountain top temperatures in Colorado and Utah revealed that SLW in clouds is mildly supercooled in a large portion of all storm passages, which means clouds are too warm for effective AgI seeding (Super 2005). Refer to Figure 1.5 for activation levels of the various cloud seeding agents currently used or proposed.

Why aren’t supercooled non-precipitating clouds’ occurrences documented for whole seasons as in Ludlams’s simple case? Seems this information would form a great starting point that could determine how much seeding can unequivocally increase snow.  The reader would like to know.

There are many studies (Heggli et al. 1983; Boe and Super 1986; Rauber and Grant 1986; Heggli and Rauber 1988; Super and Huggins 1993; Super 2005; Huggins 2009) that state SLW within a cloud varies rather rapidly with time over any given point. Due to this variability in SLW, identifying seeding potential within winter orographic storms will require identification of the proper seeding agent and delivery technique and applied at the correct time and location (Hunter 2007; Huggins 2009). Huggins (2009) suggests that any cloud seeding program will necessarily be treating clouds that at any given time may not have sufficient SLW (when the seeding agent arrives) given its variability. This begs the question as to whether seeding in these situations may have negative impacts on snowfall production. This will be further discussed in Section 1.7.4. Even though the location of SLW concentrations is known, the exact lower threshold for SLW concentrations to be sufficient for enhancing snowfall has not been quantified. It is believed to be greater than .05 mm integrated in the vertical derived from microwave radiometers (threshold used by Super and Heimbach 2005 and Manton et al 2011). However, Murakami (2013) used .2 mm as the lower threshold for determining cloud seeding feasibility and theorized that .3mm was probably the minimum threshold for viable increases in orographic precipitation enhancement.

For what durations of this SLW threshold? Did those these researchers report how long it lasted?  Did they make any seasonal estimates of these occurrences?  The reader would want to know.

This is a critical question as frequency distributions of SLW concentrations from radiometer data (Reynolds 1988) indicate that 85% of the SLW reported were at concentrations below .2 mm (Figure 1.5).What constitutes a necessary and sufficient concentration of SLW for effective cloud seeding is still in debate. 

Several studies (Rosenfeld 2000; Givati and Rosenfeld 2004; Rosenfeld and Givati, 2006; Griffith et al. 2005; Hunter 2007) have described decreases in orographic precipitation due to pollution.

The above requires some exhaustive comments:

Reynolds was unaware that when the claims of Givati and Rosenfeld concerning air pollution were examined by external skeptics they have not been substantiated.   I think this same view should be taken with Givati and Rosenfeld (2006) for pollution effects on West Coast precipitation.  We need this latter study to be validated by an external skeptic!  Yes, I am excited here.

I suspect, as in the Givati and Rosenfeld’s (2005) Israel study, where more than 500 standard gauges and 82 or so recording gauges were available to cherry-pick whatever result one wants, this may well have been  done in the 2006 study.   Kessler et al. (2006u), in an evaluation of the Israeli operational seeding program wrote: “No supporting evidence was found for the thesis of Givati and Rosenfeld (2005) regarding the decline in the Orographic (sic) precipitations due to the increase of air pollution.”

The air pollution claims, while superficially credible except for their sudden hypothesized appearance in Israel after 1990 when operational seeding produced a slight indication of decreased rainfall (Kessler et al. 2006u), were also evaluated by several independent groups and scientists: Alpert et al. (2008u, 2009u); Halfon et al. (2009u); Levin 2009u.   The Givati and Rosenfeld (2005) claims were also addressed in a review by Ayers and Levin (2009u). All these independent re-analyses and reviews of the hypothesized effect of air pollution on rainfall found the argument that air pollution had canceled seeding-induced increases in rain in Israel unconvincing.   In the few cases that Dr. Rosenfeld’s papers have been reviewed by external skeptics, they don’t hold up.  Ask Prof. Levin, Tel Aviv University, Professor Sandra Yuter, North Carolina State University, Nathan Halfon, Tel Aviv University, or me.   Hence, Caveat Emptor!

This specifically impacts the collision coalescence process and what is called warm rain, i.e. no ice processes involved. These studies discuss that pollution can slow down the collision coalescence process by narrowing the drop-size distribution. This, in turn, slows down the warm rain process and would have the largest impacts in the low-elevation coastal ranges along the west coast where the freezing level is well above the elevations of the coastal mountains, i.e. around Los Angeles where it has been proposed to reduce precipitation. Typically the decrease in orographically enhanced precipitation is greatest downwind of a major metropolitan area that is producing pollution. Givati and Rosenfeld (2004) showed precipitation losses near orographic features downwind of coastal urban centers corresponding to 15-25% of the annual precipitation.

Caveat emptor re Givati and Rosenfeld’s findings!

This loss of precipitation can be greater than the gain claimed by precipitation enhancement techniques in portions of California (Hunter 2007). Hindman et al (2006) noted that the trend over the past 20 years, from cloud droplet measurements at Storm Peak in the northern Rockies, has shown a decrease in CCN and an increase in cloud drop size. The conclusion was a decrease in upwind CCN concentrations (less pollution) but no relationship was found with precipitation rate. Thus, the change in cloud droplet spectra was not impacting riming growth efficiency (Borys et al 2003). It was noted by Creamean (2013) that pollutants, such as from human activity, were found mostly in the boundary layer and with frequently higher concentrations preceding surface cold fronts. The pollutants become trapped in the stable air as the air warms aloft and surface flows tend to be from the southeast to east tapping polluted sources from the central valley of CA. Once the front passed, the air-mass off the ocean did not contain these pollutants. It is the post–frontal cloud systems that have been identified as the most seedable in the northern and central Sierra (Heggli and Reynolds, 1985). It is not anticipated that pollutants play a significant role in these post-frontal shallow orographic clouds.

It should be noted that a more recent survey article by Tanre’ et al (2009), reviewed the impact of aerosols on precipitation and concluded: “Even though we clearly see in measurements and in simulations the strong effect that aerosol particles have in cloud microphysics and development, we are not sure what is the magnitude or direction of the aerosol impact on precipitation and how it varies with meteorological conditions. Even the most informative measurements so far on the effect of aerosols on precipitation do not include simultaneous quantitative measurements of aerosols, cloud properties, precipitation and the full set of meteorological parameters.”

Thanks to Tanre’ et al. (2009)!

The current CALWATER II experiment running this winter in California is an attempt to provide such information.

(Did it?)

The main limitation is very similar to the problems inherent in quantifying the impacts of artificial seeding of winter orographic clouds. That is the observing systems that we apply to quantifying the impacts have large measurement uncertainties and are of a magnitude similar to the expected aerosol influence on precipitation. Tanre’ notes that satellite and radar measurements have 20-30% errors in the measurement of aerosol optical depth, while aircraft sampling in-cloud can introduce changes in the cloud that can compromise the utility of the aircraft observations. In-deed measurements of surface precipitation, especially snowfall water equivalent can have 10-15% measurement uncertainty given gauge location and thus exposure to wind, minimum threshold/resolution, and such problems as capping. These types of measurement uncertainties require longer term on-going statistical analyses to reduce the random noise in the observations much like is required for cloud seeding experiments, thus reducing the influence of measurement uncertainty so as to extract the small signal that might exist. 

1.7.1.3 Artificial Stimulation of Snowfall by Seeding Agents

Artificial stimulation of snowfall is conducted through the application of aerosols that mimic natural ice nuclei to enhance the heterogeneous freezing of available SLW or by chilling the air below -40 oC to initiate homogenous nucleation. It is well known that the effectiveness of the heterogeneous seeding agent is highly temperature dependent. Artificial cloud nucleating substances (AgI, CO2, Liquid propane, SNOWMAX) are dependent on the presence of SLW at temperatures slightly below 0 oC for CO2, propane, and SNOWMAX (Ward and Demott 1989) or below -5 C to -8 oC for AgI mixtures (Figure 1.6). 

Figure 1.6 – Seeding activation versus temperature for seeding agents that have been used or proposed

These seeding agents act in different ways. Solid or liquid CO2 and liquid propane work by homogenous nucleation. These seeding agents need to be directly released in the presence of SLW for them to be effective. AgI and SNOWMAX work by heterogeneous nucleation, meaning they mimic the structure of natural ice nuclei. They do not have to be released directly into cloud or SLW. The aerosol can be carried aloft into clouds and when it encounters SLW at the right temperatures will begin generating ice crystals by contact nucleation. As shown in Figure 1.6, SNOWMAX works at the warmer (higher) end of the SLW temperature spectrum and its effectiveness does not vary greatly with temperature. To the author’s knowledge, SNOWMAX is not used in any operational seeding program but is used almost exclusively for snowmaking at ski resorts. The effectiveness of AgI to nucleate ice crystals increases by orders of magnitude from -5 oC to -12 oC (Super 2005). It should be noted that under transient water supersaturations, AgI can activate more rapidly and at temperatures near -5 oC through the condensation freezing mechanism (Pitter and Finnegan 1987). Chai (1993) explained the only way AgI could have been an effective seeding agent in the Lake Almanor seeding experiment (Moony and Lunn 1969) was through the fast activating condensation freezing process.

Mooney and Lunn (1969)… The westerly case where it was reported there had been large increases in snow reported due to seeding, was not reported for Phase II of the Lake Almanor experiment (Bartlett et al. 1975u). This omission should be unsettling to any objective scientist.

If the AgI is burned below cloud base or at temperatures warmer than -5 o C, the aerosol will not produce sufficient ice embryos until temperatures colder than -8 oC are reached (Super and Heimbach 2005). Huggins (2009) found the best temperatures for SLW in the Bridger Range Experiment occurred at < -9 oC using AgI, which suggests the AgI acted through contact or deposition nucleation. The central reason to explore propane seeding is its characteristic to be effective in mildly supercooled clouds that would be too warm for AgI. Propane dispensers tend to be more reliable, less complicated and less expensive than AgI generators. SLW temperatures in CO frequently range from -4 to -13 oC depending upon location and elevation (Boe and Super 1986; Rauber and Grant 1986; Huggins 1995; Super 2005; Huggins 2009). Due to the mildly supercooled nature of some CO locations, propane could be a useful alternative to AgI generators (Boe and Super 1986; Hindman 1986). The cloud base in California is often warmer than 0 oC while the top of the SLW near the mountain crest is usually > -12 oC (Heggli et al. 1983; Heggli and Rauber 1988; Huggins 2009). This is why propane was adopted by Reynolds (1995) as the seeding agent of choice in the Lake Oroville Runoff Enhancement Program (LOREP) in northern California (see Figure 1.4b). 

Cloud base altitude is an important consideration when siting propane dispensers which must be in-cloud or just below cloud base (at ice saturation) to be effective (Super 2005). Super and Heimbach (2005) indicate that even in the intermountain region, a significant number of hours with SLW are at temperatures where the release of AgI at elevations below -5 oC and out of cloud would not reach elevations cold enough to activate a sufficient quantity of the AgI to effectively “seed” the cloud and produce meaningful increases in snowfall. Thus, the 300 to 600 hours of reported SLW over the intermountain region during the 5 month snowfall season would require a mixture of seeding delivery methods including a mixture of high elevation ground released AgI and liquid propane or seeding from multiple aircraft. 

All weather helicopters with ceilings above 20,000 feet ASL  might be useful for targeting small watersheds when shallower clouds are present.

1.7.2 Transport and Dispersion of Seeding Material

1.7.2.1 Ground Releases 

Flow over complex terrain is not a simple and straightforward problem therefore making targeting a challenge. Trying to disperse AgI from ground based generators has proven to be very difficult (Super and Heimbach 2005). There are two critical issues here. One is whether a parcel of air starting out near the foothills or a valley location will be carried over the mountain in the prevailing wind direction or whether it will flow around the mountain. This is determined by the static stability of the air mass and the strength of the flow perpendicular to the mountain, often noted by the Froude number. When the velocity of the flow is strong enough to overcome the air parcels static stability, a Froude number greater than 1 is produced, meaning the parcel of air will pass over the mountain and not flow around the mountain. The depth of the boundary layer is also very important as ground based cloud seeding efforts are located within this layer. If AgI is released below cloud or at temperatures warmer than -5 oC, the aerosol will have to be carried up into the cloud to a level where the temperature is colder than -8 oC. If the boundary layer is shallow and does not allow the aerosol to reach the appropriate temperature level or that level is reached very near the crest of the mountain, there will be no impact on the windward slopes of the mountain. The depth of the boundary layer is a function of low level wind shear (Xue 2014), which is the change in direction or velocity of wind with height. The stronger the wind shear, the greater the depth of the boundary layer. Strong low level flow perpendicular to the mountain, along with strong wind shear and at times weak embedded convection, will provide the mechanism for lifting the aerosol up the mountain. This allows dispersal of the aerosol to seed more cloud volume. If the temperatures are cold enough and SLW is continuous, an increase in snowfall will occur on the windward slopes and increase the precipitation efficiency of the orographic cloud. The targeting issue has been described by many weather modification researchers (Super and Heimbach 2005; Reynolds 1988; Warburton et al. 1995a and b) as the single most critical issue that has compromised the success of both operational as well as research field projects. Again, reason to emphasize that effective cloud seeding is an engineering problem. 

It has been shown that ample seeded crystals with sufficient concentration need to be dispersed so that a substantial volume of cloud over the target is treated for more than trace snowfall rates to occur (Super 2005; Huggins 2009). The seeding material must be injected into the SLW in sufficient quantities to generate 50 to 100/L or more initial ice embryos. This will then utilize the available SLW and fall out of the cloud prior to the snowflakes passing over the summit of the mountain and sublimating in the lee of the mountain. An example of the use of a rather simple targeting model (GUIDE, Rauber et al , 1988) used in the Lake Oroville Runoff Enhancement Project (LOREP ) to target ground-based liquid propane seeding effects is shown in Figure 1.7. This project used the tracer SF6 co-released with the propane from two sites to validate the GUIDE and assure accurate targeting. The GUIDE plumes as shown both horizontally and vertically along with the vertical motion field from a locally released rawinsonde. 1.7.2.2 Seeding from Valley Locations Many operational cloud seeding projects have placed AgI generators in valley locations as they are easily accessible and can be manually ignited when needed. However, a considerable body of evidence indicates valley released AgI plumes are often trapped by stable air (high static stability), especially when valley-based inversions are present (Langer et al. 1967; Rhea 1969-cited but does not appear in Reynolds references; Super 2005). Often times in past projects AgI plumes from valley located generators were not tracked sufficiently to determine exactly where the aerosol plumes drifted (Smith and Heffernan 1967; Super 2005). As noted earlier, this is a recurring issue that has been raised in many winter orographic cloud seeding articles ( Elliott et al. 1978u, Rangno 1979u; Reynolds 1988; Super 2005; Hunter 2007; Huggins 2009). The aerosols may pool in the valley or may move in a direction around the mountain, only to be carried aloft when the static stability of the airmass decreases and low level winds increase. This usually occurs near and behind the surface cold fronts associated with winter storms. Thus, the AgI aerosol may travel far distances from the target but is unlikely to have appreciable effects far from a target due to the low concentrations that eventuate after many hours or days of travel. 

1.7.2.4 Seeding from Airplanes or Helicopters

Seeding by aircraft can be an alternative mechanism in locations where there is insufficient time to activate the seeding agent and grow the crystals to sufficient size for fallout to occur on the windward slopes of the barrier. These situations mainly occur within coastal mountains where the SLW near the crest of the mountain is only slightly sub-cooled. Typically the clouds extend up to a kilometer above and well upwind of the crest such that cloud top temperatures are -6 oC to -8 oC or lower. In these situations, the aircraft or helicopter can fly (hover above) in the tops of the clouds and either drop crushed dry ice, AgI droppable flares, or ignite AgI wing-tip generators or stationary flares that will directly inject the seeding material into the cloud. The dispersion would be especially enhanced in the downwash below a helicopter. Using crushed dry ice or droppable flares will create a curtain of ice crystals some 1000 m below the aircraft. This will spread at a rate of 1-2 m/s dependent upon the amount of vertical wind shear (Borovikov et al. 1961u, Hill 1980; Reynolds 1988). For these seeding curtains to merge together over the intended target area, the length of the seed line cannot be more than 30 to 40 km long (Deshler et al. 1990). However, the watershed of a large river basin can be several hundred kilometers wide. One aircraft will treat only a small portion of the watershed (see Figure 1.8). In addition, the duration of the seeding aircraft is usually about 2 to 4 hours, with the possibility of the aircraft having to descend to deice several times during the seeding mission. Aircraft operations are also expensive. For these reasons, many operational seeding programs use ground based seeding platforms, even if they are only viable a small percentage of the time. 

1.7.4 Extended Area Effects fromWinter Orographic Cloud Seeding (ones that have not been sufficiently investigated for lucky draws/synoptic biases)

The reason why I added this to the title is that I deem this part of the survey the weakest part.  No one talks about how low the concentrations of AgI would be in far away, so-called downwind affected regions, and god save anyone who looks at synoptics for a bias! Meltesen et al.(1978) did look at synoptic bias for the claimed downwind seeding increases from Climax and look what they found;  a synoptic bias that produced the illusion of downwind increases in snow!

Hunter (2009) prepared an extensive literature review of the current state of knowledge on extra or extended area effects from winter orographic cloud seeding. The main impetus for this report was to present any documented evidence that determined that seeding on one mountain barrier resulted in a possible reduction of the amount of precipitation downwind. This has been coined “Robbing Peter to pay Paul”. Hunter provided the following table which is reproduced here (not all references are included in Section 6). In every case, the seeding agent was silver iodide. These results indicate that once the AgI nuclei are released into the atmosphere, they can remain active for many hours, if not several days. If pooled in high concentrations, the AgI nuclei can seed areas well away from the intended target areas. However, the impacts of these extra-area effects are just as uncertain as the increase documented in the primary target areas. That is, without strong physical observations to compare with rigorous statistical analyses, there is still a significant level of uncertainty as to the efficacy of seeding with AgI to increase precipitation within large areas outside the intended target area. 

Table 1.2 here

The little bit of seeding (hour long pulses) or in six h blocks during the last season of the Park Range Project, made this claim ludicrous.  By 1979 it was recognized that a Type I statistical error (Mielke 1979u) affected both Climax experiments.  One of the interesting facets of Climax I that  prevented the seeding researchers from recognizing a Type I error was attributing heavier snow on seeded days upwind of Climax to seeding at Climax (Kahan et al. 1969u) 

1.7.5 Statistical Analyses

Statistical analyses have been a key part of assessing past cloud seeding experiments. Credence has usually only been given to those experiments that have been randomized and run as a confirmatory experiment. Key historical projects such as Climax and the series of Israeli cloud seeding experiments run as confirmatory, and meeting or exceeding the level of statistical significance set out in the experimental design, have come under further scrutiny and found to suffer from what is called Type 1 errors (Mielke 1979u; Rhea 1983; Rangno and Hobbs 1987u, 1993; Rangno and Hobbs 1995a,u,  b; Rosenfeld 1997, Rangno and Hobbs 1997a,u, b u).

Rosenfeld’s (1997) “Comments” cited by Reynolds were replied to by Rangno and Hobbs (1997a,u) in short form, and “Comprehensively” at the Cloud and Aerosol Research Group’s website. This dual approach was favored by Professor Peter V. Hobbs.

http://carg.atmos.washington.edu/sys/research/archive/1997_comments_seeding.pdf

Its surprising that Dr. Reynolds did not know of our responses to Dr. Rosenfeld’s many specious comments

============================

Some background on the Israeli work I did: these many exchanges led the Israel National Water Authority to form an independent panel to evaluate its operational seeding program targeting Lake Kinneret (aka, Sea of Galilee), Israel’s primary water source (Y. Goldreich, 2018, personal communication). The expert panel  that was constituted could find no evidence of increased rain the in the catchment of Lake Kinneret between 1975 and 2002  (Kessler et al. 2006).  The independent panel’s findings reversed the optimistic findings of Nirel and Rosenfeld (1995) of a statistically significant 6% increases in rain through 1990. The panel could also not replicate the 6% increase reported by Nirel and Rosenfeld using the same control stations.  Here is what Kessler et al. (2006) reported in graphical form. 

Why is this Israeli discussion important in Reynolds’ review?

The preliminary findings shown in this figure caused Rosenfield to immediately look for an “out,” and with more than 500 standard gauges and 82 recording gauges in Israel (!)  he found it by cherry-picking and claiming what Reynolds suggests in his review: air pollution was decreasing rain as much as cloud seeding was increasing it.  Givati and Rosenfeld’s conclusions did not stand up to independent investigators as was documented earlier, nor by the subsequent investigations for California cited by Reynolds.

This is typical in scientific statistical testing. It is considered less incorrect to not detect a relationship when one exists rather than detect a relationship when one does not exist. Other statistical methods, such as the use of covariates, can be useful in determining the statistical success of seeding operations (Dennis 1980; Mielke et al. 1981; Gabriel 1999; Gabriel 2002; Huggins 2009). A problem common to the statistical method of historical regression is the assumption that climate has been stable over many decades (Hunter 2007) which is called stationarity, and not declaring covariates in advance of experimentation.

1.8 Summary 

From the information summarized above it is worth reviewing the key questions as outlined for winter orographic clouds as listed in Table 1.1. 

What is the location, duration, and degree of supercooling of cloud liquid water in winter orographic clouds? 

•Concentrated in the lowest km on the windward slopes of mountain (Super andHeimbach, 2005)

•Highly variable in space and time given fluctuations in wind speed/direction and naturalprecipitation processes.

•Higher concentrations and higher frequency of SLW at warmer (sic) (higher) temperatures for all mountain ranges•SLW >.05 mm vertical integrated has been used as lower threshold for cloudseeding initiation.

Are their man-made pollutants or natural aerosols/particulates impacting the target clouds that could modify the cloud droplet spectra/IN concentrations to impede seeding effectiveness? 

•Pollutants acting as CCN can narrow the droplet spectrum and slow down the collision coalescenceprocess (warm rain) reducing rainfall downwind of major pollution sources.(Rosenfeld 2000; Givati and Rosenfeld 2004; Givati and Rosenfeld 2005.  See earlier discussion of the latter report.)

•It was found in SCPP that SIP (secondary ice production) produced high ice concentrations at relatively high cloud top temperatures (-5 to -10 oC)

•If pollutants narrow the droplet spectrum, then pollutants in theory should reduce SIP.

Mossop (1978u) found that increases in small (<14 um diameter) droplets combined with those >23 um diameter increased the efficiency of the riming-splintering process.  So it is possible, with the presence of larger droplets say, due to seaborne or other large aerosols combined with pollution sources, that the Hallett-Mossop riming-splintering process is enhanced.

•If high concentrations of pollution produce high concentration of cloud droplets in a narrow size range, this could reduce riming and reduce snowfall on the windward slopes of narrow mountain ranges where growth times are critical.

•A more recent survey article on the role of pollution on clouds and precipitation (Tanre’, 2009) concluded it was still uncertain as to the magnitude of the impact of pollution or whether pollution increases or decreases precipitation based on the meteorological setting.

•Dust (Saharan and Gobi desert) and aerosols (bacteria) acting as IN can enhance natural s

Are their significant enough differences in maritime influenced winter orographic clouds versus continental orographic clouds that strongly influence the natural precipitation process? 

•Yes. Maritime clouds with broader drop size distributions are subject to SIP and thus clouds are more efficient at higher temperatures.

•Continental clouds have relatively more SLW at lower temperatures given the lack of SIP.

•Evidence of this is well-documented when one compares SCPP and Washington studies with interior mountain studies.

====================End of Comments and Corrections  by ALR==========================

References that were uncited in the Reynolds review but were mentioned in this “review and enhancement.”

Alpert, P., N. Halfon, and Z. Levin, 2008: Does air pollution really suppress precipitation in Israel?  J. Appl. Meteor. Climatology, 47, 943-948.

Alpert, P., N. Halfon, and Z. Levin, 2009:  Reply to Givati and Rosenfeld.  J. Appl. Meteor. Climatology, 48, 1751-1754.

Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystals and ice nuclei observations in stable cap clouds.  J. Atmos. Sci., 26, 1342-1343.

Ayers, G., and Levin, 2009:  Air pollution and precipitation.  In Clouds in the Perturbed Climate System.  Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation. J. Heintzenberg and R. J. Charlson, Eds.  MIT Press, 369-399.

Bartlett, J. P.,  M. L. Mooney, and W. L. Scott, 1975:  Lake Almanor cloud seeding program.  Preprint, San Francisco Conference on weather modification, Amer. Meteor. Soc., 106-111.

Benjamini, Y, A. Givati, P. Khain, Y. Levi, D. Rosenfeld, U. Shamir, A. Siegel, A. Zipori, B. Ziv, and D. M. Steinberg, 2023:  The Israel 4 Cloud Seeding Experiment: Primary Results.   J. Appl. Meteor. Climate, 62, 317-327.  https://doi.org/10.1175/JAMC-D-22-0077.1

Borovikov, A. M., I. I. Gaivoronsky, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Kh. Khrgian and S. M. Shmeter, 1961:  Cloud Physics. Gidrometeor. Izdatel. Leningrad. (Available from Office of Tech. Serv., U. S. Dept. of Commerce.)

Cooper, W. A., and G. Vali, 1981:  The origin of ice in mountain cap clouds.  J. Atmos. Sci., 38, 1244-1259.

Cunningham, R. M., 1957:  A discussion of generating cell observations with respect to the existence of freezing or sublimation nuclei.  In Artificial Stimulation of Rain, H. Weickmann, Ed.  Pergamon Press, NY.,  267-270.

Elliott, R. D., R. W. Shaffer, A. Court, and J. F. Hannaford, 1978:  Randomized cloud seeding in the San Juan Mountains, Colorado.  J. Appl. Meteor., 17, 1298–1318.

Foster, K. R., and P. W. Huber, 1997: Judging  Science–Scientific Knowledge and the Federal Courts.  The MIT Press, Cambridge, MA, 333pp.

Grant, L. O., and P. W. Mielke, Jr., 1967: A randomized cloud seeding experiment at Climax, Colorado 1960-1965.  Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5, University of California Press, 115-131.

Grant, L. O., Chappell, C. F., Crow, L. W., Mielke, P. W., Jr., Rasmussen, J. L., Shobe, W. E., Stockwell, H., and R. A. Wykstra, 1969:  An operational adaptation program of weather modification for the Colorado River basin.  Interim report to the Bureau of Reclamation, Department of Atmospheric Sciences, Colorado State University, Fort Collins, 98pp.

Halfon, N., Z. Levin, P. Alpert, 2009:  Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects.  Environ, Res. Lett., 4, 12pp. doi:10.1088/1748-9326/4/2/025001

Hobbs, P. V., and A. L. Rangno, 1979: Comments on the Climax randomized cloud seeding experiments.   J. Appl. Meteor., 18, 1233-1237.

Kahan, K. M., J. R. Stinson, and R. L. Eddy, 1969:  Progress in precipitation modification.  Bull. Amer. Meteor. Soc., 50, 206–214.

Kessler, A., A. Cohen, D. Sharon, 2003:  Analysis of the cloud seeding in Northern Israel.  Interim report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure.

Kessler, A., A. Cohen, D. Sharon, 2006:  Analysis of the cloud seeding in Northern Israel. Final report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure, In Hebrew with an English abstract. 117pp.

Levin, Z., 2009:  On the state of cloud seeding for rain enhancement.  Report to the Cyprus Institute on Energy, Environment and Water, 18pp.

Mielke, P. W., Jr., 1979:  Comment on field experimentation in weather modification.  J. Amer. Statist. Assoc., 74, 87–88,https://doi.org/10.2307/2286729.

Mielke, P. W., Jr., L. O. Grant, and C. F. Chappell, 1970: Elevation and spatial variation effects of wintertime orographic cloud seeding. J. Appl. Meteor., 9, 476–488; Corrigendum, 10, 842; Corrigendum, 15, 801.

Mielke, P. W., Jr., Grant, L. O., and C. F. Chappell, 1971:  An independent replication of the Climax wintertime orographic cloud seeding experiment.  J. Appl. Meteor., 10, 1198-1212.

Morel-Seytoux, H. J., and F. Saheli, 1973: Test of runoff increase due to precipitation management for the Colorado River Basin Pilot Project.  J. Appl. Meteor., 12, 322-337.

Mossop, S. C., 1978: The influence of the drop size distribution on the production of secondary ice particles during graupel growth. Quart J. Roy. Meteor. Soc., 104, 323-330.

Neiburger, M., 1969: Artificial Modification of Precipitation. W. M. O. Technical Note 105, 33pp.

Neiman, P. J., G. A. Wick, F. M. Ralph, B. E.  Martner, A. B. White, and D. E. Kingsmill, 2005:  Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET:  Geographic, interannual and synoptic variability.  Mon. Wea. Rev., 133, 1199-1223.

Rangno, A. L., 1979:  A reanalysis of the Wolf Creek Pass cloud seeding experiment.   J. Appl. Meteor., 18, 579–605.

Rangno, A. L. and P. V. Hobbs, 1980: Comments on “Randomized cloud seeding in the San Juan Mountains, Colorado,” J. Applied Meteorology, 19, 346-350. 

Rangno, A. L., and P. V. Hobbs, 1987: A re-evaluation of the Climax cloud seeding experiments using NOAA published data.  J. Climate Appl. Meteor., 26,  757-762.

Rangno, A. L., and P. V. Hobbs, 1995a: Reply to Gabriel and Mielke.  J. Appl. Meteor., 34, 1233-1238.

Rangno, A. L. and P. V. Hobbs, 1997a: Reply to Rosenfeld.  J. Appl. Meteor., 36, 272-276.

https://doi.org/10.1175/1520-0450(1997)036%3C0272:R%3E2.0.CO;2

Rangno, A. L. and P. V. Hobbs, 1997b: Comprehensive Reply to Rosenfeld, Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25pp.  http://carg.atmos.washington.edu/sys/research/archive/1997_comments_seeding.pdf

Rasmussen, R. M., S. A. Tessendorf, L. Xue, C. Weeks, K. Ikeda, S. Landolt, D. Breed, T. Deshler, and B. Lawrence, 2018: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteoro. Climatol., 57, 2639–2660, https://doi.org/10.1175/JAMC- D-17-0335.1.

Rauber, R. M., and A. Tokay, 1991:  An explanation for the existence of supercooled water at the top of cold clouds. J. Appl. Meteor., 48, 1005-1023.

Rhea, J. O., L. G. Davis, and P. T. Willis, 1969:  The Park Range Project.  Final Report to the Bureau of Reclamation, EG&G, Inc., Steamboat Springs, CO. 285 pp.

Rottner, D., L. Vardiman, and J. A. Moore, 1980: Reanalysis of “Generalized Criteria for Seeding Winter Orographic Clouds”, J. Appl. Meteor., 19, 622-626.

Vardiman, L, and J. A. Moore, 1978: Generalized criteria for seeding winter orographic clouds. J. Appl. Meteor., 17, 1769-1777.

A Review and Enhancement of Chapter 8 in the book, “Aerosol Pollution Impacts on Precipitation:  A Scientific Review” 

PROLOGUE

Below is the impressive list of “Scientific Reviewers” of this volume before this belated review by yours truly happened, ones listed in the 2009 Springer book,  “Aerosol Pollution Impacts on Precipitation:  A Scientific Review.”  The authors of this book, including Chapter 8, had to review an enormous amount of literature which the reviewers also had to know in great detail.

From a reading of this book in those areas of my expertise, such a task is too much despite the authors’ valiant efforts to “get it right.”  Chapter 8  is an example of the problem of having too much to review and not enough time to scrutinize the details of so much literature in one topic.  Chapter 8 is well-written, most of the necessary citations are in it that help the reader to understand the topic.    It does an outstanding job of making a case about the, “Parallels and Contrasts” in deliberate seeding and aerosol pollution.  That is,  except for those elements in Chapter 8 that I am perhaps, a little too familiar with and feel must be addressed in this VERY belated review.

“Too familiar?”

That’s what happens to someone who has spent thousands of volunteer hours (crackpot alert!) rectifying faulty cloud seeding and cloud claims in peer-reviewed journal articles because he felt, “Someone has to do something about this!” (Second crackpot alert, possibly with megalomaniacal implications.)

It goes without saying that I was not asked to review Chapter 8 before it was published.  This would have made these comments unnecessary.  I was well known by the authors of this review as an expert on clouds, cloud seeding, and the weather in the two regions where landmark experiments are reviewed in Chapter 8; those in Colorado and Israel .   With Professor Peter V.  Hobbs in tow, I dissected those landmark experiments in Colorado and Israel and showed they were, as Foster and Huber (1997) described faulty science,  “scientific mirages.”  In fact, they were “low-hanging fruit” that poor peer reviews of manuscripts had let in the journals.  It didn’t take a genius to unravel them.

I read this chapter only recently after I was given the book by one of its authors.  I wondered if Chapter 8 had been reviewed at all by any of the illustrious reviewers listed by Springer since some oversights are so egregious.  However, I was pleased to see that almost all of my work with Prof. Hobbs on those benchmark experiments was cited, except the one I deemed most important.  Odd.

Some background 

Chapter 8 was originally assigned to Prof. Peter V. Hobbs, the director of my group at the University of Washington.  He was going to use portions of a rejected manuscript of mine on cloud seeding  and peer-review entitled, “Cloud Seeding and the Journal Barriers to Faulty Claims: Closing the Gaps.”  He described the segments he was going to use, the rise and fall of the Colorado and Israeli cloud seeding experiments, as, “pretty good.”   Peter was not easy to please.  That was the highest compliment I had ever received from him for my writing.   The manuscript, submitted in 1997,  was ultimately rejected in 1999 by the Bull. Amer. Meteor. Soc., I. Abrams, Editor,  and again in an updated version by  Advances in Meteorology in 2017 as “not the kind of paper we were looking for” in their issue on weather modification (L. Xue, Editor, personal communication).    But maybe its the kind you were looking for!  So, in a sense that manuscript has been rejected twice, sometimes the sign of something especially good.   (Off topic! Get Back, “Jojo,” as the Beatles sang.

Due to pancreatic cancer, Prof. Hobbs was unable to do this piece chapter and Prof. William R. Cotton, Colorado State University, who later has become a close friend,  took over with the additional “contributors” according to Springer,  Dean Terblanche, Zev Levin, Roelof Bruintjes, and Peter Hobbs, as listed by Springer, and all of whom I greatly admire, making these comments “difficult;” “Why am I doing this?”  Etc.

For review purposes, I have copied under the rubric of “fair use,” only those portions of Chapter 8 relevant to my expertise.   To repeat, overall, its a good review.  However, I have added commentaries in a red font following the original statements of the authors (black font) that need clarification, correction, or additions.  References to relevant articles that went uncited in Chapter 8 have been added at the end of this review and are appended with a “u” for uncited.  I have added after those all the references that WERE cited in this review and appear in the original text.  Mielke (1976) cited by the authors, does not appear in the list of their references.

========================================

List of illustrious reviewers of the Springer volume:

Chairperson: Dr.George IsaacEnvironment Canada.                       (Name, affiliation, country).

Ayers, Greg,  CSIRO Marine and Atmospheric Research, Australia

Barth, Mary, National Center of Atmospheric Research, USA

Bormann, Stephan,  Johannes-Gutenberg-University, Germany

Choularton, Thomas, University of Manchester, UK.

DeMott, Paul, Colorado State University, USA.

Flossmann, Andrea, Laboratoirede Mitiorologie Physique/OPGC Universiti: Blaise Pascal/C RS, France

Kahn, Ralph, Jet Propulsion Laboratory, USA

Khain, Alexander, The Hebrew University ofJerusalem, Israel

Leaitch, Richard, Environment Canada, Canada

Pandis, Spyros, University of Patras, Greece

Rosenfeld, Daniel, The Hebrew University ofJerusalem, Israel.

Ryan, Brian, CSIRO Marine and Atmospheric Research, Australia

Twohy, Cynthia, Oregon State University, USA.

Vali, Gabor, University of Wyoming, USA.

Yau,  Peter, McGill University, Canada

Zipser, Ed, University of Utah, USA

=============================================

….and now, very belatedly reviewing Chapter 8, yours truly, the less illustrious,  Arthur L. Rangno,  retiree,                                                                                                                                                                                                Research Scientist IV, Cloud and Aerosol Research Group, Atmospheric Sciences Department, University of Washington, USA:

================

Chapter 8 in Aerosol Impacts on Precipitation:“Parallels and Contrasts Between Deliberate Cloud Seeding and Aerosol Pollution Effects”

8.1    Deliberate cloud seeding, with the goal of increasing precipitation by the injection of specific types of particles into clouds, has been pursued for over 50 years. Efforts to understand theprocesses involved have led to a significant body of knowledge about clouds and about the effects ofthe seeding aerosol. A number of projects focused on the statistical evaluation of whether a seeding effect can be distinguished in the presence of considerable natural variability. Both the knowledge gained from these experiments, and the awareness of the limitations in that understanding, are relevant to the general question of aerosol effects on precipitation. Definite proof from the seeding projects for an induced increase in precipitation as a result of the addition of seeding material to the clouds would represent a powerful demonstration of at least one type of dominant aerosol­ precipitation link in the clouds involved. Therefore, in this chapter we review the fundamental conceptsof cloud seeding and overview the parallels and contrasts between evaluations of deliberate and inadvertent modification of precipitation by aerosols. It is not our intent to provide a comprehensive assessment of the current status of cloud seeding research. We direct the reader to more compre­hensive weather modification assessments in NRC (2003), Cotton and Pielke (2007), Silverman (2001, 2003),and Garstang et al. (2005).

Deliberate cloud seeding experiments can be divided into two broad categories: glaciogenic seeding and hygroscopic seeding. Glaciogenic seeding occurs when ice-producing materials (e.g. dry ice (solid CO2), silver iodide, liquid propane etc.) are injected into a supercooled cloud for the purpose of stimulating precipitation by the ice particle mechanism (see Sect. 2.2). The underlying hypothesis for glaciogenic seeding is that there is commonly a deficiency of natural ice nuclei and therefore insufficient ice particles for the cloud to produce precipitation as efficiently as it would in the absence of seeding.

The second category of artificial seeding experiments is referred to as hygroscopic seeding. In the past this type of seeding was usually used for rain enhancement from warm clouds (see Cotton 1982 for a review of early hygroscopic seeding research).

However, more recently this type of seeding has been applied to mixed phase clouds as well. The goal of this type of seeding is to increase the concentration of collector drops that can grow efficiently into raindrops by collecting smaller droplets and by enhancing the formation of frozen raindrops and graupel particles. This is done by injecting into a cloud (generally at cloud base) large or giant hygroscopic particles (e.g., salt powders) that can grow rapidly by the condensation of water vapour to produce collector drops (see Sect. 2.3).

Static Glaciogenic Cloud Seeding

Static cloud seeding refers to the use of glaciogenic materials to modify the microstructures ofsupercooled clouds and precipitation. Many hundreds of such experiments have been carried over the past 50 years or so. Some are operational cloud seeding experiments (many of which are still being carried out around the world) which rarely provide sufficient information to decide whether or not they modified either clouds or precipitation. Others are well designed scientific experiments that provide extensive measurements and modeling studies that permit an assessment of whether artificial seeding modified cloud structures and, if the seeding was randomized, the effects of the seeding on precipitation. While there still is some debate of what constitutes firm “proof”(see NRC 2003; Garstang et al. 2005) that seeding affects precipitation, generally it is required that both strong physical evidence of appropriate modifications to cloud structures and highly significant statistical evidence be obtained.

My comprehensive, “critical” review and enhancement of NRC 2003 is here.  Compared to the 1973 NRC review, the NRC 2003 one was merely a superstructure, a Hollywood movie set, not the real deal.  

The reason?  

Too much literature to review in depth even for the illustrious authors of the NRC 2003 report.   Professor Garstang did ask my boss, Prof. Peter V. Hobbs to participate in the 2003 review, but he declined the offer telling me that it would be better if we “commented” on the 2003 review after it was published if necessary.  I nodded and went back to my desk.  Peter usually knew best.  Fate intervened.  Peter came down with pancreatic cancer and our review  of the 2003 report never happened until I got to it years later.

  • Glaciogenic Seeding of Cumulus Clouds

The static seeding concept has been applied to supercooled cumulus clouds and tested in a variety of regions. Two landmark experiments (Israeli I and Israeli II), carried out in Israel, were described in the peer-reviewed literature. The experiments were carried out by researchers at the Hebrew University of Jerusalem (HUJ), hereafter the experimenters. These two experiments were the foundation for the general view that under appropriate conditions, cloud seeding increases precipitation (e.g. N.R.C. 1973; Sax et al. 1975; Tukey et al. 1978a, b; Simpson 1979; Dennis 1980; Mason 1980,1982; Kerr 1982; Silverman 1986; Braham 1986; Cotton 1986a, b; Cotton and Pielke 1992, 1997; Young1993).

Nonetheless, reanalysis of those experiments by Rangno and Hobbs (1993-sic) suggested that the appearance of seeding-caused increases in rainfall in the Israel I experiment was due to “lucky draws” or a Type I statistical error.

The correct year for Rangno and Hobbs is 1995, not 1993 .   Having the wrong year in a reference is a not a good sign right off the bat.  

The first evidence for a lucky draw in Israeli I was presented by Wurtele (1971u) when she reported that the little seeded Buffer Zone between the two targets exhibited the greatest statistical significance in rainfall in either target on Center seeded days.  Wurtele (1971u) quoted the Israeli I chief meteorologist that the Buffer Zone could only have been inadvertently seeded but 5-10% of the time, and “probably less.”  Wurtele should have been cited.  The wind analysis when rain was falling at the launch site near the BZ in Rangno and Hobbs (1995) supports the chief meteorologist’s view.  It would have taken a very bad pilot to have seeded the BZ if he had been instructed not to.

Furthermore, Rangno and Hobbs (1993 sic) argued that during Israel II naturally heavy rainfall over a wide region encompassing the north target area gave the appearance that seeding caused increases in rainfall over the north target area.

The first evidence for naturally heavy rain over a wide region in Israel II, including both targets on north target seeded days, was presented by Gabriel and Rosenfeld (1990u), a critical article  that somehow that went uncited by the authors of Chapter 8.   Gabriel and Rosenfeld stated that the degree of heavy rain on north target seeded days in the south target, from a historical study, was “clearly statistically significant.” 

Rangno and Hobbs (1995) added to that evidence by analyzing rainfall over wide region that included Lebanon and Jordan on north target seeded days.  The Rangno and Hobbs (1995) analysis corroborated the statement by Gabriel and Rosenfeld (1990) concerning a lopsided draw on north target seeded days of Israeli II that affected most of Israel.  In fact, the greatest apparent effect of cloud seeding on north target seeded days was in the south target at Jerusalem (Rangno and Hobbs 1995)!

Deeply troubling, too,  is why the “full results” of the Israeli II experiment by Gabriel and Rosenfeld (1990u) was not cited in a supposed review of those experiments.  The null result of the “full analysis” of Israel II which incorporated random seeding in the South target,  had been omitted in previous reporting by Gagin and Neumann (1976u, 1981).  The “full” results reported by Gabriel and Rosenfeld (1990u) was an extremely important development:  Israeli II had not replicated Israeli I when evaluated in the same way.  Furthermore, the a priori design of Israeli II specified by the Israel Rain Committee mandated that a crossover evaluation be carried out (Silverman 2001).

However, the null result of Israeli II left some questions in the minds of Gabriel and Rosenfeld (1990u).  Were actual rain increases in the north canceled out by decreases in rain on seeded days in the south target resulting in a null overall result?

This idea was later posited by Rosenfeld and Farbstein (1992) as a valid explanation and the disparate results was attributed to dust/haze.  This hypothesis ignored the fact that unusually heavy rain fell on the south target when the north was being seeded.   This left little chance for the south target’s seeded days to overcome this lopsided disadvantage, thus  leaving the impression that seeding had decreased rainfall when rainfall on the control and seeded days in the south target were compared.  Why this was not clear remains a puzzle.

At the same time, lower natural rainfall in the region encompassing the south target area gave the appearance that seeding decreased rainfall over that target area. But this speculation could not explain the positive effect when the north target area was evaluated against the north upwind control area.

Levin et al. 2010u (and unavailable to these authors) also reanalyzed Israeli II and found that a synoptic bias had produced the misperception of seeding effects downwind from the coastal control region mentioned above.    Levin et al’s 2010u conclusions corroborated the Rangno and Hobbs (1995) evaluation of Israeli II described inappropriately as “speculation” by the authors of Chapter 8.  

Details of this controversy can be found in the March 1997 issue of the Journal of Applied Meteorology (Rosenfeld 1997; Rangno and Hobbs 1997a; Dennis and Orville 1997; Rangno and Hobbs1997b; Woodley 1997; Rangno and Hobbs 1997c;  Ben-Zvi 1997; Rangno and Hobbs 1997d; Rangno and Hobbs 1997e). Some of these responses clarified issues; others have left a number of questions unanswered.

The authors should have indicated for the reader what questions were left unanswered.  

However, the exchanges between pro-seeding partisans and Rangno and Hobbs (1997) were extremely important because they led the Israel National Water Authority to form an independent panel of experts to ascertain what the result of operational seeding of the watersheds around Lake Kinneret (aka, Sea of Galilee) was over the decades.  Operational seeding began during the 1975/76 rain season.

The reports of the independent panel (Kessler et al. 2002u, 2006u) were apparently unknown to the authors of this review.  Key elements of the final 2006 report were reprised by Sharon et al. (2008u):  Twenty-seven winter seasons  (75/76 through 01/02)  of operational seeding had not led to an indication that rain had been increased, due to cloud seeding,  an astounding result considering the cost of seeding for so long a period.

Below is a graphical presentation of the independent panel’s findings in their 2006 final report:

Figure 1. The results of operational seeding on the watersheds of Lake Kinneret (aka, Sea of Galilee) as reported by Kessler et al. 2006.  (a) is that result of seeding on rainfall reported by Nirel and Rosenfeld (1995), b-d are the results found for various periods, including the very same era evaluated by Nirel and Rosenfeld (1995).[1]

————-footnote———-

[1] The findings of Kessler were challenged by seeding partisans at the HUJ and who claimed that “air pollution” was decreasing rain as much as cloud seeding was increasing it.  While this was a convenient explanation, it was not found credible by many subsequent independent investigators, including by Kessler et al. (2006).

—————————continuing with Chapter 8————–

8 Deliberate Cloud Seeding and Aerosol Pollution Effects

It is interesting to note that in the Israeli experiments the effects of artificial seeding with silver iodide appeared to be an increase in the duration of precipi­ tation, with little if any effect on the intensity of precipitation (Gagin 1986; Gagin and Gabriel 1987), a finding compatible with the “static” seeding hypothesis.

The ersatz Colorado State University cloud seeding experiment results had exactly the same outcome as those described above in Israel.  In retrospect, the duration findings from both the Colorado and Israeli scientists were huge red flags that a natural bias on seeded days had occurred in these experiments as was shown in later reanalyses by external skeptics (e.g., Rhea 1983u, Rangno and Hobbs 1987).

Givati and Rosenfeld (2005) wrote, “that cloud seeding with silver iodide enhances precipitation especially where the orographic enhancement factor (see Chapter 6) was the largest. Likewise, the pollution effects reduced precipitation by the greatest amount at the same regions”. They suggestedthat this is because the shallow and short-living orographic clouds are particularly susceptible to such impacts. This suggests that attempts to alter winter precipitation should be concentrated on orographic clouds. Or interpreted in terms of inadvertent modification of clouds; winter orographic clouds may be the most susceptible to precipitation modification by pollution.

The Israeli “experimenters,” who cost their government so much in wasted cloud seeding effort, could not walk away and apologize for their misguided findings and withheld results.  So Givati and Rosenfeld (2005) generated the argument that pollution was exactly canceling out cloud seeding effects!  Of course, the air pollution argument was nonsense, the result of cherry picking amid the 500 or so Israeli rain gauges in Israel.   Here’s what the uncited Kessler et al. (2006u) report had to say about the Givati and Rosenfeld (2005) claims about air pollution:

No supporting evidence was found for the thesis of Givati and Rosenfeld (2005) regarding the decline in the Orographic precipitations (sic) due to the increase of air pollution.”

The air pollution claims by Givati and Rosenfeld (2005), while superficially credible,  except for their sudden hypothesized appearance that canceled out cloud seeding effects, were also evaluated by several independent groups and scientists in later publications not available to the authors of this review:  Alpert et al. (2008u); Halfon et al. (2009u);  Levin (2009u), Ayers and Levin (2009u).  All these independent re-analyses and reviews of the hypothesized effect of air pollution on rainfall found the argument that air pollution had canceled seeding-induced increases in rain unconvincing.

This also suggests that the conceptual model on which the Israeli cloud seeding experiments was based is not exactly as postulated. The seeding was originally aimed at the convective clouds that formed over the narrow coastal plain, with the intent of nucleating ice crystals and forming graupel earlier in the cloud life cycle (Gagin and Neumann 1974), thus leading to increased rainfall in the catchment basin of the Sea of Galilee to the east of the Galilee Mountains. However, the report of Givati and Rosenfeld (2005) concluded that “cloud seeding did not enhance the convective precipitation, but rather increased the orographic precipitation on the upwind side of the Mountains, probably by the Bergeron-Findeisen process.”

The above is not what Kessler et al. (2006u) concluded.   It was a shame that the authors did not know about Kessler et al.’s report.

To update this review, the idea posited by Rosenfeld and Givati (2005) about seeding orographic clouds, promoted by these authors, was tested in Israel-4, a seven season randomized experiment (Benjamini et al. 2023u).  Seeding in the orographic north of Israel resulted in no viable effect on rainfall.  This should not be surprising.

The lack of enhancement of the convective clouds in Israel might be explained by their tendency to mature and dissipate inland during the winter storms. Seeding of mature convective clouds cannot affect them much. The lack of enhancement is also consistent with the microphysically maritime nature of the convective clouds.

The authors seem to be unaware that for decades the cloud seeding experimenters had reported in their many publications that the clouds of Israel were “continental” in nature (e.g., Gagin and Neumann 1974, 1976u, Gagin 1975u), that is, they contained high droplet concentrations that made them extremely “un-maritime.”  This in turn helped generate scientific consensus that seeding such clouds had produced viable results on rainfall  in Israeli I and Israeli II because it was hard for them to rain and needed cloud seeding  (e.g., Kerr 1982, Silverman 1986, Dennis 1989).

This appears to be caused mainly due to the natural hygroscopic seeding by sea spray or mineral dust particles coated with soluble material (Levin et al.1996, 2005) in the winter storms that enhance the warm precipitation (Rosenfeld et al. 2001) as well as promoting the formation of ice hydrometeors that is followed by ice multiplication (Hallett and Mossop 1974).

In a surprising oversight in a supposed “scientific review,” the authors do not cite Rangno (1988) who described so long ago the clouds of Israel as we know them today; ones that rain via warm rain processes and precipitate regularly via the ice process when top temperatures are >-10°C, all contrary to the many reports of the cloud seeding experimenters (e.g., Gagin 1986).

Moreover, it has not been satisfactorily determined why the Israeli cloud seeding experimenters could not discern the natural precipitating characteristics of their clouds with all the tools available to them for so many decades.  Did the wind not blow over the Mediterranean during Israeli I and II, thus did not “maritimize” clouds when Prof. Gagin was observing them with his radars and sampling them with his research aircraft?

I spent 11 weeks in Israel from early January through mid-March 1986 studying the precipitating nature of Israeli clouds. I spoke with Israel Meteorological Service forecasters, and the chief forecaster of the Israeli randomized experiments.   Not surprisingly, they were all aware of the natural character of their rain clouds that so eluded the cloud seeding researchers at the HUJ; faulty descriptions of clouds were published by HUJ seeding researchers repeatedly in peer-reviewed journals.  How did this happen?

These suggestions are supported by the results of glaciogenic cloud seeding in Tasmania, which targeted a hilly area by seeding along an upwind coastline. The seeding in Tasmania was shown to enhance precipitation from the stratiform orographic clouds, but not from the convective clouds (Ryan and King 1997). This is consistent with the microphysical conclusions of Rangno and Hobbs (1993 sic), who asserted that, cloud seeding as done in Israel could not have possibly caused the statistically documented rain enhancement from the convective clouds there.

Again, the correct year for Rangno and Hobbs is 1995.  

The minimal amount of cloud seeding in Israeli I should have been discussed. The experimenters realized this post facto of Israel-1 and added a second seeding aircraft and no less than 42 ground generators (NRC 1973) when conducting Israel II.  The difference in released seeding material in Israeli II from the ~1000 grams released in all of Israeli I (Gabriel and Neumann (1967) has to be stupefying and raises questions.

Do the authors of this chapter really think that only 70 h of line seeding by a single aircraft upwind of each target per whole Israeli rain season could have produced a statistically significant result in rainfall in Israeli I?  Do they know that the coverage of convective clouds with rising air below cloud base is spotty,  that the rain that comes into Israel from the Mediterranean are “tangled masses” in various life cycle stages  (as described by Neumann et al. 1967)? 

Recently, Givati and Rosenfeld (2005) carried out a study in which the effects of pollution on rainfall suppression in orographic clouds were separated from the effects of cloud seeding in Israel. They concluded that the two effects have the opposite influence on rainfall, demonstrating the sensitivity of clouds to anthropogenic aerosols of different kinds. By analyzing the rainfall amounts in northern Israel during the last 53 years during days in which no seeding was carried out, they observed a decreasing trend of the orographic factor R0 (discussed in Chapter 6) with time from the beginning of the study. They associated this decrease with the increase in aerosol pollution. The same trend, but shifted upward by 12-14%, was observed for days in which seeding was carried out. Thus, it appears that the opposing effects of air pollution and seeding appear to have nearly canceled each other.

The air pollution canceling cloud seeding claims by Rosenfeld and colleagues have not been deemed credible to those who have investigated them, listed previously.  

Another noteworthy experiment was carried out in the high plains of the U.S. (High Plains Experiment (HIPLEX-1) Smith et al.(1984).Analysis of this experiment revealed the important result that after just 5 min, there was no statistically significant difference in the precipitation between seeded and non-seeded clouds, (Mielke et al. 1984). Cooper and Lawson( 1984) found that while high ice crystal concentrations were produced in the clouds by seeding, the cloud droplet region where the crystals formed evaporated too quickly for the incipient artificially produced ice crystals to grow to appreciable sizes. Instead, they formed low density, unrimed aggregates having the water equivalent of only drizzle drops, which were too small to reach the ground before evaporating. Schemenauer and Tsonis( 1985) affirmed the findings of Cooper and Lawson in a reanalysisof the HIPLEX data emphasizing their own earlier findings (Isaac et al. 1982) that cloud lifetimes were too short in the HIPLEX domain for seeding to have been effective in the clouds targeted for seeding (i.e. Those with tops warmer than -12°C). Although the experiment failed to demonstrate statistically all the hypothesized steps, the problems could be traced to the physical short lifetimes of the clouds (Cooper and Lawson 1984; Schemenauer and Tsonis 1985). This in itself is a significant result that shows the ability of physical measurements and studies to provide an understanding of the underlying processes in each experiment. The results suggested that a more limited window of opportunity exists for precipitation enhancement than was thought previously.  Cotton and Pielke (1995) summarized this window of opportunity as being limited to: Clouds that are relatively cold-based and continental; Clouds with top temperatures in the range -1O° to-25°C, and a timescale confined to the availability of significant supercooled water before depletion by entrainment and natural precipitation processes.

Today, this window would even be viewed as too large, since many cold based continental clouds with tops>-25°C have copious ice particle concentrations(e.g., Auer et al. 1969u, Cooper and Saunders 1980u, Cooper and Vali 1981u, Grant et al. 1982u.  These references were added to make them more appropriate for inland mountain locations). The HIPLEX results also indicated that small clouds make little contribution to rainfall.

This begs the question, should we expect a similar window of effectiveness for inadvertent IN pollution?

 8.1.1. Seeding Winter Orographic Clouds

The static mode of cloud seeding has also been applied to orographic clouds. Precipitation enhancement of orographic clouds by cloud seeding has several advantages over cumulus clouds. The clouds are persistent features that produce precipitation even in the absence of large-scale meteorological disturbances. Much of the precipitation is spatially confined to high mountainous regions thus making it easier to set up dense ground based seeding and observational networks. Moreover, orographic clouds are less susceptible to a “time window” as they are steady clouds that offer a greater opportunity for successful precipitation enhancement than cumulus clouds. A time window of a different type does exist for orographic clouds, which are related to the time it takes a parcel of air to condense to form supercooled liquid water and ice crystals while ascending to the mountain crest.

Missing in this discussion is the time that ice forms in orographic clouds after the leading edge forms as a droplet cloud. Ice particles have been shown to form a short distance downwind at surprisingly high temperatures as reported by Auer et al (1969u), Cooper and Vali (1981u).  

What then is the effect of introducing ice by AgI at an upwind edge where ice is already going to form immediately downwind in those situations?  Does this case represent a productive seeding possibility?  This scenario should have been discussed by the Chapter 8 authors.

The special case described here of non-precipitating clouds, where cloud seeding will be effective without question is not quantified.  How often do they occur, and how thick are they?  What is their cloud top temperature?  Are bases low enough so that the light, seeding-induced snowfall will reach the ground?  Will it be enough to justify the cost of seeding, by ground or aircraft?

The Chapter 8 authors were not aware of Rangno (1986u) who displayed the rapid changes in cloud characteristics that made seeding even orographic clouds problematic due to those changes in cloud top temperatures and in wind directions over periods of just 3-4 hours.

So many questions, so few answers by the authors, elements that point to the extreme difficulty of proper reviews in any field in meteorology!

If winds are weak, then there may be sufficient time for natural precipitation processes to occur efficiently. Stronger winds may not allow efficient natural precipitation processes but seeding may speed up precipitation formation. Stronger winds may not provide enough time for seeded icecrystals to grow to precipitation before being blown over the mountain crest and evaporating in the sinking sub saturated air to the lee of the mountain. A time window related to the ambient winds, however, is much easier to assess in a field setting than the time window in cumulus clouds.

The landmark randomized cloud seeding experiments at Climax, near Fremont Pass, Colorado (referred to as Climax I and Climax II), Colorado, reported by Grant and Mielke(1967) and Mielke et al.( 1970,1971) suggested increases in precipitation of 50% and more on favorable days (e.g. Grant and Mielke 1967; Mielke et al. 1970,1971), and the results were widely viewed as demonstrating the efficacy of cloud seeding (e.g. NRC 1973; Sax et al. 1975; Tukey et al. l978a, b; American Meteorological Society 1984),even by those most skeptical of cloud seeding claims(e.g. Mason 1980,1982). Nonetheless, Hobbs and Rangno (1979), Rangno and Hobbs (1987, 1993) question both the randomization techniques and the quality of data collected during those experiments and conclude that the Climax II experiment failed to confirm that precipitation can be increased by cloud seeding in the Colorado Rockies.

It appears that these cited critical papers by the present writer were not read by the authors of this review.  Hobbs and Rangno (1979), a study originated and carried out by the second author, demonstrated that the claims about a physical foundation for the Climax experiments were bogus.  These important findings was left out of the discussion above.   The experimenters had claimed out of thin air (Grant and Mielke 1967) that the stratifications by 500 mb temperatures were reliably connected to cloud top ones.

Moreover, the precipitation per day (PPD) does not decrease at Climax (or elsewhere in the Rockies) after a 500 mb temperature of -20°C is exceeded as the experimenters claimed (e.g., Grant et al. 1969u, 1974u, Chappell 1970u).  Rather, the PPD continues to increase at temperatures above -20°C as shown in Rangno 1979, Hobbs and Rangno (1979).   The decrease in PPD that occurred during Climax I when the 500 mb temperature was >-20° C was indicative of a bias in the draw on the Climax I control days rather than representative of PPD climatology. 

Hobbs and Rangno (1979) further demonstrated that the master’s thesis repeatedly invoked by the experimenters in support of the 500 mb/cloud top temperature correspondence claim (e.g., Grant and Elliott 1974) did no such thing,  but rather proved just the opposite.  This was due to the way that meteorological data were assigned to experimental days by the experimenters (i. e., as described by Fritsch in Grant et al. 1974u).   Critical papers were not read by the authors.  Q. E. D.

Quoting the authors from their paragraph above:  “the quality of the data collected during those experiments”.

This is a euphemism for what Rangno and Hobbs (1987) found.

The experimenters repeatedly described the NOAA-maintained recording gauge in the center of the Climax target as “independently” collected data (e.g., Mielke et al. 1970).  Rangno and Hobbs simply went to the NOAA hourly precipitation data publication for Colorado and used those data to evaluate the Climax experiments. Those published data were not the same as those used by the experimenters. 

The experimenters had, in fact, reduced the recording charts at that key gauge in Climax II themselves as revealed by Mielke 1995, and in doing so, helped the seeded day cases (Rangno and Hobbs 1987).  Climax II, not so lucky in its storm draw on seeded days as Climax I, was plagued by “helpful” errors.  Thirty-two of 43 differences in precipitation between that used by the experimenters and that in the NOAA publication helped the seeded cases.  The chance that such results came from an unbiased source can be rejected at a P value of 0.0001.

Climax I, however, benefitting from a storm draw on seeded days that favored the appearance of a cloud seeding effect in its first half of conduct,  had virtually no errors in data.

What do we make of this?  Circle the wagons? 

Or come to a logical conclusion that someone helped the Climax experiment replicate Climax II?  At this time, mid-way through Climax II, the Bureau of Reclamation’s cloud seeding division had begun spending hundreds of thousands of dollars on the planning of the Colorado River Basin Pilot Project.  There was, therefore, enormous pressure on the experimenters to have Climax II replicate Climax I.  

We let the reader decide what may have happened.

———-

Inexplicably, the authors of this chapter omit the reanalysis of Mielke et al. (1981) by Rhea (1983u).  Indeed, this author’s own independent reanalysis of the Climax experiments (rejected in 1983) was partially because reviewers’ thought Rhea’s reanalysis, simultaneously under review and that came to the same result, was more robust.  Rhea showed that the mismatch between the time the control gauges were read and when the Climax target gauges were read resulted in the false impression that Climax II had replicated Climax I.  When the gauges were synchronized by Rhea (1983u), the Climax II seeding increases disappeared (as they also did using the published NOAA data in Rangno and Hobbs (1987).

A background note:  Grant et al. 1983u, however, strongly criticized the Rhea reanalysis before it was published.  Rhea altered his reanalysis along the lines suggested by Grant et al. prior to publication.  Nevertheless, Grant et al. did not revise their published comment to account for Rhea’s revisions.  Grant, in a personal note to Rhea at that time, did not know why he and his group had not altered their criticism of Rhea’s revised manuscript.

The published record concerning Rhea’s reanalysis is, therefore confusing; the experimenters appeared to critique Rhea’s paper while not actually doing so.

Even so, in their reanalysis, Rangno and Hobbs(1993) did show that precipitation increased by about 10% in the combined Climax I and II experiments.

First, the so-called “10% increase in precipitation for all of the Climax I and II experiments was “built in” by the choice of control stations mid-way through Climax I by the experimenters  as demonstrated in Rangno and Hobbs (1993).   We are sure the authors did not read that 1993 paper.  Control stations should have been selected prior to the Climax I experiment as good design demands.  Otherwise, the temptation to cherry-pick control stations that prove what the experimenters already believe becomes too big a temptation and that is surely what happened in Climax I at the half-way point.

If the seeding effect is real, it will continue following a cherry-picked group of control stations.  If there is no further sign of seeding, as shown in “Climax 1B,” the second half of Climax I by Rangno and Hobbs (1993) then we know that the gauges were picked because it showed what the experimenters believed before the experiment even began.  The lack of any sign of an effect of cloud seeding on precipitation continued through all of Climax II as well (Rangno and Hobbs 1993).

Finally, 1000 re-randomizations of the Climax data performed by the University Washington Academic Computer Center by Irina Gorodnoskya (unpublished data) showed that the 10% claimed increase in precipitation by the authors above was in the noise of these experiments.  It should not be quoted as an increase in snow due to seeding as the authors do here.

This should be compared, however, to the original analyses by Grant and Mielke (1967), Grant and Kahan (1974), Grant and Elliott (1974), Mielke et al. (1971), Mielke et al. (1976) and Mielke et al. (1981) that indicated greater than 100% increase in precipitation on seeded days for Climax I and 24% for Climax II.

Two other randomized orographic cloud seeing experiments, the Lake Almanor Experiment (Mooney and Lunn 1969) and the Bridger Range Experiment (BRE) as reported by Super and Heimbach (1983) and Super (1986) suggested positive results.

Of concern is that the “cold westerly” case in Phase I of the Lake Almanor experiment, where large seeding effects were reported was not reported in Phase II (Bartlett et al. 1975).   Also, the large increases (40%) in snow  reported in Phase I for cold westerly cases, is suspect since such clouds are likely to develop high natural ice particle concentrations naturally.  The Lake Almanor Phase I  is badly in need of a reanalysis by external skeptics;  its results should not be taken at face value.

 However, these particular experiments used high elevation AgJ generators, which increase the chance that the Agl plumes get into the supercooled clouds. Moreover, both experiments providedphysical measurements that support the statistical results (Super and Heimbach 1983, 1988).

There have been a few attempts to use mesoscale models to evaluate cloud seeding programs. Cottonet al. (2006) applied the Colorado State University Regional Atmospheric Modeling System(RAMS)to thesimulation of operational cloud seeding in the central Colorado Mountains in the 2003-2004 winterseason. The model included explicit representation of surface generator production of Agl at thelocations, burn rates, and times supplied by the seeding operator. Moreover, the model explicitlyrepresented the transport and diffusion of the seeding material, its activation, growth of icecrystals and snow,and precipitation to the surface. Detailed evaluation of model forecast orographicprecipitation was performed for 30 selected operational seeding days. It was shown that the model could be a useful forecasting aid in support of the seeding operations. But the model over-predictednatural precipitation, particularly on moist southwest flow days. The model also exhibited virtually no enhancement in precipitation due to glaciogenic seeding. There are a number of possiblecauses for the lack of response to seeding, such as over prediction of natural precipitation, which prevented the effects of seeding from being seen. In addition, the background CCN and INconcentrations are unknown, therefore lower CCN concentrations than occurred would make the cloudsmore efficient in precipitation production, thus reducing seeding effectiveness.

Finally, Ryan and King(1997) reviewed over 14 cloud seeding experiments covering much of southeastern, western,and central Australia, as well as the island of Tasmania. They concluded that static seeding over the plains of Australia is not effective. They argue that for orographic stratiform clouds, there is strong statistical evidence that cloud seeding increased rainfall, perhaps by as much as 30% over Tasmania when cloud top temperatures are between -10 and -l2°C in southwesterly airflow. The evidence that cloud seeding had similar effects in orographic clouds overthe mainland of southeastern Australia is much weaker. Note that the Tasmanian experiment had bothstrong statistical and physical measurement components and thus meets, or at least comes close to meeting, the NRC (2003) criteria for scientific “proof.” Cost/benefit analysis ofthe Tasmanian experiments suggests that seeding has a gain of about 13:1. This is viewed as a real gain to hydrologic energy production.

A complication revealed in the analysis of some of the Australian seeding experiments is thatprecipitation increases were inferred one to three weeks following seeding in several seedingprojects(e.g. Bigg and Turton 1988). Bigg and Turton ( I988) and Bigg ( 1988, 1990, 1995) suggestedthat silver iodide seeding can trigger biogenic production of additional ice nuclei. The latter research suggests that fields sprayed with silver iodide release secondary ice nuclei particles at intervals of up to ten days.

In summary, the “static” mode of cloud seeding has been shown to cause the expected alterations incloud microstructure including increased concentra­ tions of ice crystals, reductions of supercooled liquid water content, and more rapid production of precipitation elements in both cumuli (Isaac et al.1982; Cooper and Lawson 1984)and orographic clouds(Reynolds and Dennis 1986; Reynolds 1988;Super andBoe 1988; Super et al. 1988; Super and Heimbach 1988). The documentation of increases in precipitation on the ground due to static seeding of cumuli, however, has been far more elusive, with the Israeli experiment (Gagin and Neumann 1981) providing the strongest evidence that static seeding of cold-based, continental cumuli can cause significant increases of precipitation on the ground.  

Tukey et al. (1978b, Appendendix C, pC.1) wrote:   “The strongest evidence for rainfall enhancement involving the seven latest substantial experiments this task force has studied seems today to be that from the two Israeli experiments….”  The statement in blue (highlighted by this writer) which is almost the exact wording as that found in Turkey et al. (1978b) 30 years before the Springer book was published) is troubling indeed.    The assessment by Turkey et al. in 1978 was valid; it was not valid 30 years later when so much water has gone under the bridge concerning the Israeli cloud seeding experiments (or,  “too little water” due to cloud seeding).

Moreover,  citing Gagin and Neumann (1981) in 2009 as the strongest evidence in support of cloud seeding as they do,  demonstrated that the authors of this review were not aware of,  nor understood the literature in the topic they are supposedly reviewing.  The omission of critical literature by the authors as was proof of this assertion.

Why wasn’t I asked to review this manuscript in advance of publication since I am well-known as an expert on both the Colorado and Israel clouds, weather, and cloud seeding experiments?  Moreover, the authors of this review knew this.

The evidence that orographic clouds can cause significant increases in snowpack is far more compelling, particularly in the more continental and cold-based orographic clouds (Mielke et al. 1981; Super and Heimbach 1988).

The authors omit Rhea’s 1983u reanalysis of Mielke et al. 1981 and that of Rangno and Hobbs (1987) in remarking that “significant increases in snowpack” have been compellingly shown by Mielke et al. 1981.

Update to the orographic seeding claim above by the authors:  The NCAR Wyoming experiment, completed in 2013 (Rasmussen et al. 2018u), could find no viable evidence that seeding from ground generators had increased precipitation after six seasons of randomized seeding.

Perhaps, however, the most challenging obstacle to evaluating cloud seeding experiments to enhance precipitation, is the inherent natural variability of precipitation in space and time, and the inability to increase precipitation amounts to better than ~10%. This last obstacle puts great demands on the measuring accuracy and the duration of the experiments. Shouldn’t we expect similar obstacles in evaluating inadvertent effects of IN pollution on precipitation?

A well-stated description of the problem.

===================================================

 List of references mentioned in the critical review that were uncited by the authors, or are relevant papers for an enhancement of Chapter 8 that were unavailable to these authors because they were published after Chapter 8 appeared.

Alpert, P., N. Halfon, and Z. Levin, 2008: Does air pollution really suppress precipitation in Israel?  J. Appl. Meteor. Climatology, 47, 943-948.

Alpert, P., N. Halfon, and Z. Levin, 2009:  Reply to Givati and Rosenfeld.  J. Appl. Meteor. Climatology, 48, 1751-1754.

Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystals and ice nuclei observations in stable cap clouds.  J. Atmos. Sci., 26, 1342-1343.

Ayers, G., and Levin, 2009:  Air pollution and precipitation.  In Clouds in the Perturbed Climate System.  Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation. J. Heintzenberg and R. J. Charlson, Eds.  MIT Press, 369-399.

Bartlett, J. P., M. L. Mooney, and W. L. Scott, 1975:  Lake Almanor Cloud Seeding Program.  Preprint, Weather Modification Conference, San Francisco, 106-110.

Benjamini, Y, A. Givati, P. Khain, Y. Levi, D. Rosenfeld, U. Shamir, A. Siegel, A. Zipori, B. Ziv, and D. M. Steinberg, 2023:  The Israel 4 Cloud Seeding Experiment: Primary Results.   J. Appl. Meteor. Climate, 62, 317-327.  https://doi.org/10.1175/JAMC-D-22-0077.1

Chappell, C. F.,  1970:  Modification of cold orographic clouds.  Atmos. Sci. Paper No. 173, Dept. of Atmos. Sci., Colorado State University, Fort Collins, 196pp.

Cooper, W. A., and C. P. R. Saunders, 1980:  Winter storms over the San Juan mountains.  Part II:  Microphysical processes.  J. Appl. Meteor., 19, 927-941.

Cooper, W. A., and G. Vali, 1981:  The origin of ice in mountain cap clouds.  J. Atmos. Sci., 38, 1244-1259.

Dennis, A. S., 1989: Editorial to the A. Gagin Memorial Issue of the J. Appl. Meteor., 28, 1013.  No doi.

Gabriel, K. R., and Y. Neumann, 1978:  A note of explanation on the 1961–67 Israeli rainfall stimulation experiment.  J. Appl. Meteor., 17, 552–556.

Gabriel, K. R., and Rosenfeld, D., 1990: The second Israeli rainfall stimulation experiment: analysis of precipitation on both targets. J. Appl. Meteor., 29, 1055-1067.  https://doi.org/10.1175/1520-0450(1990)029%3C1055:TSIRSE%3E2.0.CO;2

Grant, L. O., DeMott, P. J., and R. M. Rauber, 1982:  An inventory of ice crystal concentrations in a series of stable orographic storms.  Preprints, Conf. Cloud Phys., Chicago, Amer. Meteor. Soc. Boston, MA. 584-587. No doi.

Grant, L. O., J. G. Medina, and P. W. Mielke, Jr., 1983:  Reply to Rhea. J. Climate Appl. Meteor., 22, 1482–1484.

Grant, L. O., C. F. Chappell, L. W. Crow, J. M. Fritsch, and P. W. Mielke, Jr., 1974:  Weather modification: A pilot project.  Final Report to the Bureau of Reclamation, Contract 14-06-D-6467, Colorado State University, 98 pp. plus appendices.

Grant, L. O., Chappell, C. F., Crow, L. W., Mielke, P. W., Jr., Rasmussen, J. L., Shobe, W. E., Stockwell, H., and R. A. Wykstra, 1969:  An operational adaptation program of weather modification for the Colorado River basin.  Interim report to the Bureau of Reclamation, Department of Atmospheric Sciences, Colorado State University, Fort Collins, 98pp.  (Available from the Bureau of Reclamation, Library,   Federal Building, Denver, Colorado 80302.

Halfon, N., Z. Levin, P. Alpert, 2009:  Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects.  Environ, Res. Lett., 4, 12pp. doi:10.1088/1748-9326/4/2/025001

Kessler, A., A. Cohen, D. Sharon, 2003:  Analysis of the cloud seeding in Northern Israel.  Interim report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure.

Levin, Z., N. Halfon, and P. Alpert, 2010: Reassessment of rain enhancement experiments and operations in Israel including synoptic considerations.  Atmos. Res., 97, 513-525.

                        http://dx.doi.org/10.1016/j.atmosres.2010.06.011

Levin, Z., N. Halfon, and P. Alpert: 2011:  Reply to the Comment by Ben-Zvi on the paper “Reassessment of rain experiments and operations in Israel including synoptic considerations” Atmos. Res., 99, 593-596.

Mielke, P. W., Jr., 1995:  Comments on the Climax I and II experiments including replies to Rangno and Hobbs.  J. Appl. Meteor., 34, 1228–1232.

National Research Council, 1973: Weather & Climate Modification: Progress and Problems. National Academy of Sciences, 258 pp., https://doi.org/10.17226/20418.

Neumann, J., K. R. Gabriel, and A. Gagin, 1967: Cloud seeding and cloud physics in Israel:  results and problems.  Proc. Intern. Conf. on Water for Peace.  Water for Peace, Vol. 2, 375-388.  No doi.

Rangno, A. L., 1979:  A reanalysis of the Wolf Creek Pass cloud seeding experiment.   J. Appl. Meteor., 18, 579–605.

Rangno, A. L., 1986:  How good are our conceptual models of orographic clouds?  In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, Amer. Meteor. Soc., 115-124. Invited paper, title assigned by A. S. Dennis.

 https://doi.org/10.1175/0065-9401-21.43.115

Rangno, A. L., 1988: Rain from clouds with tops warmer than -10 C in Israel.  Quart J. Roy. Meteor. Soc., 114, 495-513.

   https://doi-org/10.1002/qj.49711448011

Rasmussen, R. M., S. A. Tessendorf, L. Xue, C. Weeks, K. Ikeda, S. Landolt, D. Breed, T. Deshler, and B. Lawrence, 2018:  Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches:  Traditional statistics and ensemble modeling.  J. Appl. Meteor. and Climate, 57, 2639-2660.

Rhea, J. O., 1983:  “Comments on ‘A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments.'”  J. Climate Appl. Meteor., 22, 1475-1481.

Rosenfeld, D., 1998: The third Israeli randomized cloud seeding experiment in the south: evaluation of the results and review of all three experiments. Preprints, 14th Conf. on Planned and Inadvertent Wea. Modif., Everett, Amer. Meteor. Soc. 565-568. No doi.

Sharon, D., A. Kessler, A. Cohen, and E. Doveh, 2008:  The history and recent revision of Israel’s cloud seeding program.  Isr. J. Earth Sci., 57, 65-69.     https://DOI.org/10.1560/IJES.57.1.65.

Wurtele, Z. S., 1971: Analysis of the Israeli cloud seeding experiment by means of concomitant meteorological variables. J. Appl. Meteor., 10, 1185-1192.    https://doi.org/10.1175/1520-0450(1971)010%3C1185:AOTICS%3E2.0.CO;2

Totality of References  in Chapter 8.1, “Introduction” through 8.2.2 “Seeding Winter Orographic Clouds” 

=================================

American Meteorological Society, 1984: Statement on planned and inadvertent weather modification.  Bull. Amer. Meteor. Soc., 66, 447–448.

Ben-Zvi, A., 1997:  Comments on “A new look at the Israeli randomized cloud seeding experiments.” J. Appl. Meteor., 36, 255-256.

Bigg, E. K., 1988: Secondary ice nucleus generation by silver iodide applied to the ground. J. Appl. Meteor., 27, 453-488.

Bigg, E. K., 1990:  Aerosol over the southern ocean. Atmos. Res., 25, 583-600.

Bigg , E. K., 1995:  Tests for persistent effects of cloud seeding in a recent Australian experiment.  J. Appl. Meteor., 34, 2406-2411.

Bigg, E. K., and E. Turton, 1988: Persistent effects of cloud seeding with silver iodide.  J. Appl. Meteor., 27, 505-514

Braham, Roscoe R., Jr., 1986:  Rainfall enhancement–a scientific challenge.  Rainfall Enhancement–A Scientific Challenge, Meteor. Monogr., 21, No. 43,  1–5.

Cooper, W. A., and R. P. Lawson, 1984:  Physical interpretation of results from the HIPLEX-1 experiment.  J. Climate Appl. Meteor., 23, 523-540.

Cotton, W. R., 1982: Modification of precipitation from warm clouds. A review.  Bull. Meteor. Soc., 63, 146-160.

Cotton, W. R., 1986a: Testing, implementation, and evolution of seeding concepts–a review.  In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, Amer. Meteor. Soc., 63-70.

Cotton, W. R., 1986b: Testing, implementation, and evolution of seeding concepts–a review.  In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, Amer. Meteor. Soc., 139-149.

Cotton, W. R., and R. A. Pielke, 1992:  Human Impacts on Weather and Climate. ASteR Press, 271pp.

Cotton, W. R., and R. A. Pielke, 1995:  Human Impacts on Weather and Climate, 1st edition, Cambridge University Press, 288pp.

Cotton, W. R., and R. A. Pielke, 2007:  Human Impacts on Weather and Climate, 2nd edition, Cambridge University Press, 308pp.

Cotton, W. R., R. R. McAnelly, G. Carrio, P. Mielke, and C. Hartzell, 2006:  Simulations of snowpack augmentation in the Colorado Rocky Mountains.  J. Weather Modification, 38, 58-65.

Dennis, A. S., 1980:  Weather Modification by Cloud Seeding.  Academic Press, 267pp.

Dennis A. S., and H. D. Orville, 1997: Comments on “A new look at tbe Israeli cloud seeding experiments.” J. Appl. Meteor., 36, 277-278

Gagin, A., 1986:  Evaluation of “static” and “dynamic” seeding concepts through analyses of Israeli II experiment and FACE-2 experiments.  In Rainfall Enhancement–A  Scientific Challenge, Meteor. Monogr., 43, Amer. Meteor. Soc., 63–70.

Gagin, A., and K. R. Gabriel, 1987:   Analysis of recording rain gauge data for the Israeli II experiment. Part I:  Effects of cloud seeding on the components of daily rainfall.  J. Climate Appl. Meteor.,  26,   913–926.

Gagin, A., and J. Neumann, 1974: Rain stimulation and cloud physics in Israel. Weather and Climate Modification, W. N. Hess, Ed., John Wiley and Sons,  454–494.

Gagin, A., and J. Neumann, 1981:  The second Israeli randomized cloud seeding experiment: evaluation of results.  J. Appl. Meteor., 20, 1301–1311.

Garstang, M., R. Bruintjes, R. Serafin, H. Oroville, B. Boe, W. R. Cotton, J, Warburton, 2005:  Weather Modification; Finding common ground. Bull. Amer. Meteor. Soc. 86, 647-655.

Givati, A., and Rosenfeld, D., 2005: Separation between cloud-seeding and air pollution effects. J. Appl. Meteor. Climate, 44, 1298-1314.    https://doi.org/10.1175/JAM2276.1

Grant, L. O., and R. D. Elliott, 1974:  The cloud seeding temperature window.  J. Appl. Meteor., 13, 355-363.

Grant, L. O., and A. M. Kahan, 1974:  Weather modification for augmenting orographic precipitation. Weather and Climate Modification, W. N. Hess, ed., John Wiley and Sons, 282-317.

Grant, L. O.,  and P. W. Mielke, Jr., 1967:  A randomized cloud seeding experiment at Climax, Colorado 1960-1965.  Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5, University of California Press, 115-131.

Hobbs, P. V., , andA. L. Rangno, 1979:  Comments on the Climax randomized cloud seeding experiments.   J. Appl. Meteor., 18, 1233-1237.

Isaac, G. A., J. W. Strapp, and R. S. Schemenauer, 1982: Summer cumulus cloud seeding experiments near Yellowknife and Thunder Bay, Canada. J. Appl. Meteor., 21, 1266-1285.

Kerr, R. A., 1982: Cloud seeding: one success in 35 years.Science,217,519–522.    https://doi.org/10.1126/science.217.4559.519

Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean.  J. Appl. Meteor., 35, 1511-1523.

https://doi.org/10.1175/1520-0450(1996)035%3C1511:TEODPC%3E2.0.CO;2

Levin, Z., A. Teller, E. Ganor, and Y. Yin, 2005: On the interaction of mineral dust, sea salt particles and clouds–A measurement and modeling study from the MEIDEX campaign.  J. Geosphys. Res.110, D20202, doi 10.1029/2005JD005810.

Mason, B. J., 1980:  A review of three long-term cloud-seeding experiments.  Meteor. Mag., 109, 335-344.

Mason, B. J.,, 1982:  Personal Reflections on 35 Years of Cloud Seeding.  Contemp. Phys., 23, 311-327.

Mielke, P. W., Jr., K. J. Berry, A. S. Dennis, P. L. Smith, J. R. Miller, Jr., B. A. Silverman, 1984: HIPLEX-1: Statistical evaluation. J. Appl. Clim. Meteor.23, 513-522.

Mielke, P. W., Jr., L. O. Grant, and C. F. Chappell, 1970:  Elevation and spatial variation effects of wintertime orographic cloud seeding.  J.  Appl. Meteor., 9, 476-488.  Corrigenda, 10,  842, 15, 801.

Mielke, P. W., Jr.,  L. O. Grant, and C. F. Chappell, 1971:  An independent replication of the Climax wintertime orographic cloud seeding experiment.  J. Appl. Meteor., 10, 1198-1212.

Mielke, P. W., Jr.,  G. W. Brier, L. O. Grant, G. J.  Mulvey, and P. N. Rosenweig, 1981:  A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments.  J. Appl. Meteor., 20, 643-659.

Mielke et al. 1976 does not appear in the references of this volume.

Mooney, M. L., and G. W. Lunn, 1969: The area of maximum effect resulting form the Lake Almanor randomized cloud seeding experiment.   J. Appl. Meteor., 8, 68-74.

National Research Council-National Academy of Sciences, 1973:  Weather and Climate Modification: Progress and Problems, T. F. Malone, Ed., Government Printing Office, Washington, D. C., 258 pp.

National Research Council, 2003: Critical Issues in Weather Modification Research. National Academy Press, 123 pp.

Rangno, A L., and P. V. Hobbs, 1987:  A re-evaluation of the Climax cloud seeding experiments using NOAA published data.  J. Climate Appl. Meteor., 26,  757-762.

Rangno, A L., and P. V. Hobbs, 1993:  Further analyses of the Climax cloud-seeding experiments.  J. Appl. Meteor., 32, 1837-1847.

Rangno, A L., and P. V. Hobbs, 1993 (sic):  A new look at the Israeli cloud seeding experiments.  J. Appl. Meteor., 34, 1169-1193.

Rangno, A L., and P. V. Hobbs, 1997a: Reply to Woodley.  J. Appl. Meteor., 36, 253.

Rangno, A L., and P. V. Hobbs, 1997b: Reply to Ben-Zvi.  J. Appl. Meteor., 36, 257-259.

Rangno, A L., and P. V. Hobbs, 1997c:  Reply to Rosenfeld.  J. Appl. Meteor., 36, 272-276.

Rangno, A L., and P. V. Hobbs, 1997d: Reply to Dennis and Orville.  J. Appl. Meteor., 36, 279.

Rangno, A. L., and P. V. Hobbs, 1997e:  Comprehensive Reply to Rosenfeld, Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25pp, with a forward by P. V. Hobbs.

Reynolds, D. W., 1988: A report on winter snowpack-augmentation.  Bull Amer. Meteor. Soc., 69, 1290-1300.

Reynolds, D. W., and A. S. Dennis, 1986:  A review of the Sierra cooperative project. Bull. Amer. Meteor. Soc.67, 513-523.

Rosenfeld, D., 1997:  Comment on “Reanalysis of the Israeli Cloud Seeding Experiments”, J. Appl. Meteor., 36, 260-271.

Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation.  A possible desertification feedback loop.  Proc. Nat. Acad. Sci.98, 5975-5980.

Ryan, B. F., and W. D. King, 1997:  A critical review of the cloud seeding experience in Australia.  Bull. Amer. Meteor. Soc.78, 239-254.

Sax, R. I., S. A. Changnon, L. O. Grant, W. F. Hitchfield, P. V. Hobbs, A. M. Kahan, and J. S. Simpson, 1975 :Weather modification:  where are we now and where are we going?  An editorial overview.  J. Appl. Meteor.14, 652–672.

Schemenauer, R. S., and A. A. Tsonis, 1985:  Comments on “physical interpretation of results from the HIPLEX-1 experiment.  J. Appl. Meteor.24, 1269-1274.

Silverman, B. A., 1986:  Static mode seeding of summer cumuli-a review.  Rainfall Enhancement–A  Scientific Challenge, Meteor. Monogr., 21, No. 43,  Amer. Meteor. Soc., 7–24.

Silverman, B. A.., 2001. A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteor. Soc., 82, 903-924.

Silverman, B. A., 2003: A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteor. Soc., 84, 1219-1230.

Smith, P. L., A. S. Dennis, B. A. Silverman, A. B. Super, E. W. Holroyd, W. A. Cooper, P. W. Mielke, K. J. Berry, H. D. Orville, and J. R. Miller, 1984:  HIPLEX-1:  Experimental design and response variables. J. Clim. Appl. Meteor.23, 497-512.

Tukey, J. W., Jones, L. V., and D. R. Brillinger, 1978a:  The Management of Weather Resources, Vol. I,  Proposals for a National Policy and Program.  Report of the Statistical Task Force to the Weather Modification Advisory Board, Government Printing Office. 118pp.

Tukey, J. W., D. R. Brillinger, and L. V. Jones, 1978b:  Report of the Statistical Task Force to the Weather Modification Advisory Board, Vol. II.  U. S. Government Printing Office, pE-3.

Simpson, J. S., 1979:  Comment on “Field experimentation in weather modification.” J. Amer. Statist. Assoc., 74, 95-97.

Super, A. B., 1986: Further exploratory analysis of the Bridger Range winter cloud seeding experiment. J. Appl. Meteor,25, 1926-1933.

Super, A. B., and B. A. Boe, 1988: Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky mountains.  Part III.  observations over the Grand Mesa, Colorado. J. Appl. Meteor., 27, 1166-1182.

Super, A. B., and J. A. Heimbach,1983:  Evaluation of the bridger range cloud seeding experiment using control gauges.  J. Appl. Meteor., 22, 1989-2011.

Super, A. B., and J. B. Heimbach, Jr., 1988:  Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky mountains.  Part II.  Observations over the Bridger Range mountains.  J. Appl. Meteor., 27, 1152-1165.

Super, A. B., B. A. Boe, and E. W. Holroyd, 1988:  Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky Mountains.  Part I.  Experimental design and instrumentation.  J. Appl. Meteor., 27, 1145-1151.

Woodley, W., 1997:  Comments on “A new look at the Israeli Randomized cloud seeding experiments.” J. Appl. Meteor., 36, 250-252.

Young, K. C., 1993:  Microphysical Processes in Clouds.  Oxford University Press, 335-336.

The Nightmare before Banff: A Science Coming Out Saga

The story of a coming out science “party” for a young, under-credentialed worker who has found that his greatest expertise is finding fault in the work of others.  But he now, for the first time, must defend his work overturning that of the leading scientists in his field  “at conference.”

STORY BOARD

  • Not a horror movie, but a science story that reveals the human element in science. Our protagonist is a shy, under credentialed weather forecaster who takes on the best scientists in their field but must pass through a frightening mental hoop before demonstrating at a conference that one of their published cloud seeding successes was illusory.  Well, I guess it could be a movie, one with a scary part…
  • This cloud and weather-centric protagonist has already taken the famous scientists on in the published literature in May 1979 when his first ever paper appeared in a journal reanalyzing one of their most important experiments.  But he must now defend his work in person at a large conference in Banff, Alberta, Canada, in October 1979.  This will be his first presentation at a scientific conference, his “coming out party.”
  • However, an advance program for the Banff conference is also published in May 1979 and it reveals that our protagonist’s findings will be addressed by the famous scientists right before he gets up to present them!   Colloquially, “WTF”?
  • In September 1979, he learns from his lab chief that the famous scientists are, indeed, working on a new analysis of the experiment that our protagonist will discuss at Banff.  Palpitations and dread levels rise.  He writes to the famous scientists inquiring about this new analysis of their experiment, but receives no reply.
  • Our protagonist lives a nightmare few months before the conference, wondering even if he should go and be humiliated as he expects.  He is not on a credential par with those scientists at any level.  He is just an ordinary meteorologist and weather forecaster with no advanced degree, one of the very few with only a bachelor’s degree presenting at the conference.
  • Our protagonist redoes his published paper, looking for errors he might have made, or ones that the reviewers might have missed, ones that will surely be emphasized at the conference.  He doesn’t find any.
  • He does go to the October conference filled with terrible dread anyway, bur his allies, the director of his group, and a supporting prof are with him.
  • Late in the afternoon before his presentation the next day, one of the famous scientists tells our protagonist that they won’t be discussing his paper after all before he gives it.  They acknowledge, behind the scenes, that they, “screwed up.”
  • The story ends on a happy note.  There is no criticism of his paper.
  • Our protagonist also realizes that his awful 1975 gaffe in a local newspaper story about the work of the famous scientists may have given them an understandable motive for some “payback” as the months of dread, intentional or not, seem now to have been.

Note:  There is some real bawling described in this saga by our protagonist concerning the journal publication hurdles that one must go through.  In his case, because his controversial work overturning the published research of others was done on his own initiative, “time and dime,” there is an awful lot of emotional “ownership” in what happens.

If you are now like I was  in this long ago,  “anxiety chapter” of my life, one that so many of our citizens are likely experiencing today due to so many unwise changes being foisted on our country, the war in the Middle East,  etc., I highly recommend this video on anxiety:

https://www.prageru.com/video/can-anxiety-be-a-good-thing-with-dr-chloe-carmichael?utm_source=Iterable&utm_medium=email&utm_campaign=campaign_8040634

Art

==================================================

————-The Nightmare before Banff—————-

The program for the October 1979 Banff 7th Conference on Planned and Inadvertent Weather Modification came out in the Bulletin of the American Meteorological Society (BAMS) in May 1979.  My talk there was going to be a coming out party for me because it was going to be my first presentation at a conference.  Previously, I had just run a microphone around at a conference for those who had questions after a talk.  And I was going to present at a joint meeting of both the Planned and Inadvertent Weather Modification crowd, and the “Statistics in the Atmosphere” crowd, too; in other words, in front of a big audience of top scientists.  May 1979 was the same month that my peer-reviewed paper reanalyzing the Wolf Creek Pass experiment (WCPE) came out as the lead article in the J. Appl. Meteor.  That was the work I was going to summarize at Banff.

But what I saw in the May BAMS program for the October conference terrified me.  The famous leaders of the Colorado State University (CSU) cloud seeding experiments, Prof. Lewis O. Grant, and their statistician, Dr. Paul W. Mielke, Jr, were going to discuss my paper before I gave it!

Yikes!

Mielke and Grant were at the top of the mark in the world of cloud seeding/weather modification and had published several papers describing their prestigious cloud seeding successes at Climax and Wolf Creek Pass, Colorado.

I wondered, too, how the program organizers could allow this sequence.

I was going to be humiliated, I was sure, due to errors that I had made, but did not, or could not recognize due to my own bias or ignorance.   Maybe I had not even copied down runoff or precipitation data in my dozens of “pen and ink” spreadsheets correctly from the volumes of government published data, the source of my analyses.1

I had palpitations off and on from the time I read that BAMS program until the day before my talk at Banff.   I just could not imagine how horrible it was going to be; I repeatedly envisioned that my truly limited skills were going to be exposed. I was sure I would have nothing to say when I got up to speak after Professor Grant and Dr. Mielke had spoken and had surely decimated my reanalysis.  I would be standing there, I imagined, with my mouth open, maybe apologizing for errors.  It would be similar to that 3rd grade trauma with Ann Stone, a never forgotten humiliation!2

I would go to movies, “Serpico” comes to mind, and right in the middle, I would think about Banff, and my heart would seem to want to burst out of my chest, the palpitations were so strong.  I feel lucky I didn’t keel over during those months before Banff.  My heart is pounding right now and I am shivering as I flesh out this chapter of my life.  This must seem silly to more experienced people I suppose.

September 1st, 1979: dread increases. 

I learn from Prof. Peter Hobbs, the director of my group,  that a new analysis of the Wolf Creek Pass experiment is being worked up by the seeding experimenters at Colorado State University.  I write to their leader, Professor Lewis O. Grant, and ask him about the new analysis, but I get no reply.  Now I am positive all the faults that I missed in my paper will be shown up, that my presentation will be shown to be severely flawed and worthless before I give it!

I often thought, too, that I just wouldn’t go to Banff, though my allies at the University of Washington, Profs. Peter Hobbs and Lawrence F. Radke, were going, so that wasn’t really wasn’t an option.  Prof. Hobbs was also going to present my Colorado work that showed that there was no basis for the foundation of the CSU cloud seeding claims that supported huge increases in snow due to seeding when the 500 mb (hPa) temperatures were equal to or higher than -20°C, a temperature level that the experimenters had misperceived as ones that were a proxy  for cloud top temperatures.

Prof. Hobbs had reviewed my Wolf Creek Pass experiment (WCPE) manuscript drafts, too, when I started bringing them in from home, but he did not know how reliable my work was; Prof. Hobbs was a facilitator/editor of publications that originated within his group.  He also did not allow papers to go out from his group without his purview.  While improving drafts submitted to him, he usually became a co-author, and sometimes the lead author, as on Hobbs and Rangno (1978, a reanalysis of the Skagit Project) and again on Hobbs and Rangno (1979, “Comments on the Climax and Wolf Creek Pass Experiments”).

The WCPE was the third in a trifecta of cloud seeding successes reported by CSU scientists that formed an imposing edifice of cloud seeding successes.  They appeared to reinforce one another, and the Climax experiments had been specifically called out by our best scientists as cloud seeding successes (e.g., the National Academy of Sciences (NAS) in 1973, Warner 1974).  Prof. Hobbs had been a member of the NAS panel that had praised the CSU cloud seeding work and it was also cited in his popular 1977 graduate level book with Prof. J. M. Wallace, “Atmospheric Science:  An Introductory Survey.”

Moreover, the WCPE cloud seeding success, whose preliminary results were being presented to the Bureau of Reclamation’s cloud seeding division in 1969, was the reason why the massive Colorado River Basin Pilot Project (CRBPP) took place centered on Wolf Creek Pass.  Greater potential increases in snow due to cloud seeding were being reported by CSU scientists in the WCPE as a characteristic of storms in southwest Colorado in the San Juan Mountains than in northern Colorado where their highly regarded Climax randomized experiments had taken place.

The CRBPP remains as the nation’s costliest randomized orographic cloud seeding experiment.   In my opinion, the Bureau of Reclamation made many efforts to “do it right” by randomizing it, having others who did not know the if a random decision had been called, measure the precipitation each day.

Prior to carrying out the reanalysis of the WCPE, I had been a forecaster with the CRBPP for all its operating winters from 1970/71 through 1974/75, the only meteorologist to have been with it the whole time.  I had been, Acting Project Forecaster during its first season following the departure of Project Manager, Paul T. Willis, and Assistant Project forecaster for the remaining seasons.  I drew the morning and evening weather maps3and made forecasts five days a week as Assistant forecaster, and seven days a week as Acting Project Forecaster for most of the 1970/71 season.[2]  Namely, I had something to do with most of the random calls for an “experimental day” in the CRBPP.

I knew I had to go to Banff or forever be noted as a coward and take whatever Professors Grant and Mielke delivered no matter how humiliated I might be.

—————–

There were no personal computers in those days of the mid-1970s, of course; I was using a $100 Texas Instrument handheld calculator for statistics and correlations from the dozens of pen-and-ink spreadsheets9 I had made copying raw data from the CRBPP, runoffs from geological survey books, and from NOAA Climatological Data and Hourly Data publications.  Sometimes I would have to enter a pair of numbers to get correlations three times if the second one didn’t produce the same result as the first cycle.  That, too, was a nightmare and so frustrating when it happened.

Due to that May 1979 program in BAMS, I redid the whole WCPE published paper from scratch thinking there must be a serious problem.  I didn’t find one, but still, I thought, SOMETHING must be wrong with it and I was going to hear about it at Banff!

———————

Some regrettable, necessary background that might have contributed to the BAMS program sequence I saw: payback?

A careless and inappropriate metaphor that I said to a newspaper reporter at the end of a recorded interview became a secondary headline in the Durango Herald newspaper in November 19754:

Cloud Seeding… Rangno:  ‘Watergate of Meteorology.’”

Since Watergate was a burglary by political actors, I had carelessly implied criminal activity had taken place in the reporting of CSU’s cloud seeding work!  Yikes!

What I had meant was that if the CSU work was overturned it would be a “big deal” since it had led to the funding of the massive CRBPP.  Watergate was on everyone’s mind in 1975, and what I said just came out without a lot of thought.

The reporter, Mike McRae for the Durango Herald, and who had told me after our long interview that I could review his article before it came out, canceled my pre-pub review the evening before, saying, “Trust me,  Art.”

I left for Fresno, California, the next day for short term employment with Atmospherics, Inc., a cloud seeding company, and did not see the Herald article until a week after it appeared.  It was sent to me by a Durango friend and E. G.&G., Inc., co-worker.

I couldn’t sleep after I saw it.

How that Durango newspaper headline happened: a cautionary tale for young scientists who might deal with the press. 

The reporter who recorded my November 1975 interview within the confines of the Durango Herald offices told me I would get to review his article before it appeared, an unusual offer.  I wanted to make sure that what I told him was accurately portrayed.  I had been cautious in what I said, and that was reflected in the full article.

However, the evening before it was to appear and a day on which I was traveling to Fresno, California, the reporter, Mike McRae, called to say that I wouldn’t be able to review his writeup beforehand after all.  He assured me it would fine with those magic words: “Trust me, Art.”

But after I saw it in Fresno, I couldn’t sleep, as you would imagine.  The body of the piece was accurate, but that secondary headline; oh my.  I was expecting to hear from CSU lawyers at any time!5

Why was I interviewed in the first place? 

I had previously written a critical piece concerning the obstacles to successful cloud seeding that were encountered during the CRBPP that perhaps McRae had seen in the spring of 1974 in a Telluride, CO, magazine, the Deep Creek Review.  Unknowingly, the reporter was also setting me up for publication of two contrasting views of cloud seeding; mine and the CRBPP Project Manager, Mr. Larry Hjermstad, a seeding partisan who went on to form a very successful cloud seeding company in Colorado, Western Weather Consultants.

I had no problem with the idea of, “contrasting views” when I saw the paper.  It’s what the public should see so that they can take the best path forward when there are questions about something.

Those nationally recognized CSU experiments, lauded by our best individual scientists and the National Academy of Sciences[3] itself, had led to the multi-million-dollar CRBPP, still the mostly costly such mountain cloud seeding experiment ever undertaken ($40-50 million in 2020 dollars).  So, in fact, it would be a scientific story of great magnitude if the CSU cloud seeding successes reported on many occasions in peer-reviewed journals, were illusory.

When I was interviewed in November 1975, the CRBPP had ended in the spring of 1975 without proving cloud seeding had increased snowfall.  It had been widely expected beforehand that the CRBPP would confirm the CSU results with as much as 50% increases in snowfall on seeded days and something like 250,000 additional acre-feet of runoff even though it had been randomized.

But instead of questioning the validity of the successes on which the CRBPP was based, it was believed, and published in the journal literature on several occasions, that it was the conduct of the CRBPP as well as design flaws that caused it to fail.  It was an odd interpretation to me due to the discrepancies in the CSU hypotheses revealed during the CRBPP.

However, blaming the faulty conduct of the CRBPP did remove blame from the sponsor of the CRBPP, the Bureau of Reclamation’s cloud seeding division, and the reviewers of those faulty manuscripts that allowed ersatz claims of great cloud seeding successes to reach the peer-reviewed journals in the first place.

When I next saw “Mike the Reporter” in a Durango supermarket, he advised me, “Never trust a newspaper reporter.”

Q. E. D.

——————–

Consequences of the 1975 Durango Herald article

Mike McCrae’s story was to have a major impact at CSU and was to save me a lot of work (at least for a while).  The story reached the National Science Foundation that had partially funded the prior cloud seeding experiments by CSU scientists.   They wanted to know from them, “What’s going on?”6

Moreover, I had stated in the Durango Herald article that I was going to reanalyze ALL three of the major CSU cloud seeding experiments!  What was I thinking?  I had no idea how much work that was going to be.  I just felt something had to be done by someone, even if it was by an under-credentialed weather forecaster.  But, I “knew the territory” and the weather patterns as a forecaster virtually like no one else.  And it was becoming clear that the ”narrative” for the failed CRBPP was design flaws and poor execution on the part of the E. G. & G., Inc. seeding team that I was a part of.

CSU scientists, perhaps concerned over an outsider reevaluating their experiments, beat me to it.

The Apology and Request for Data from Colo State University

After returning from Fresno, California in early December 1975, I drove to CSU to apologize in person for my newspaper gaffe to Prof. Lewis O. Grant, leader of the CSU seeding experiments. But I also went there to obtain data from their cloud seeding experiment at Wolf Creek Pass.  I had come to believe it was suspect as a success due to the many discrepancies and obstacles to cloud seeding that were encountered during the CRBPP.

Prof. Grant was extremely gracious in our meeting in accepting my apology and supplied the data I requested; he was that kind of guy.

Updating Prof. Lewis O. Grant on my reanalysis

 During the winter of 1975/76 and after my visit to CSU, I remained in Durango to work on the reanalysis of the WCPE, living off my savings (no skiing!).   I passed Prof. Lewis O. Grant, progress reports as I moved along on my reanalysis over the following two years. I had promised him I would do this when I met with him in December 1975 in exchange for the CSU data.

He was actually encouraging me as I forwarded my “progress” reports to him—yes, again, he was that kind of guy.  Prof. Grant wrote at one point that I had found “something important” as the WCPE unraveled.   But after a while he stopped responding to my reports and I stopped sending them.

1976:  Joining Peter Hobbs’ Cloud Physics Group

By September 1976, after that self-funded “sabbatical” in Durango during the winter of 75/76, I had been hired by Prof. Peter V. Hobbs to be a part of his “Cloud Physics Group” at the University of Washington when a member of his airborne research group left.7

I had called Prof. Larry Radke in his group in August 1976 about the Cloud Physics Group’s airborne study in Durango that had taken place during the spring of 1974.  Prof. Radke informed me that there was a job opening in Prof. Hobbs group and, “Was I interested in applying for it?”  I was, and I was interviewed over the phone by Prof. Hobbs soon afterwards and got hired!

In August I was hired into his group as a “Flight Meteorologist” taking the place of Mr. Don Atkinson who had resigned to go back to school.  I also had an offer from Atmospherics, Inc., to work more short-term cloud seeding programs for them around the world.

I took the offer from Prof. Hobbs.

I wasn’t sure I was skilled enough to be in academia under a world class scientist like Prof. Hobbs.  I wasn’t sure, either, how I would do flying in their 1939 manufactured B-23 research aircraft.  I had been on one of their flights during their 1974 research project in Durango and, surprisingly,  didn’t get motion sickness.

I started at the University of Washington in mid-September 1976, and continued to work with the data of the Wolf Creek Pass experiment at home and on my own time at the UW.  Prof. Hobbs, ebullient about cloud seeding at the time I arrived due to just having finished the successful “Cascade Project,” a non-randomized seeding experiment, took a great interest in the drafts of manuscripts I began to bring in, editing them and revamping them, namely, using his great skills to improve my drafts.

Prof. Hobbs had just been a member of the National Academy of Sciences (1973) and in composing their optimistic report on the Climax, CO, experiments, had written a similar optimistic, “Personal Viewpoint” in 1975 in Sax et al.’s review of weather modification in the J. Appl. Meteor.

Banff:  The Nightmare Ends

In a hallway of the convention center in Banff where the talks were going to be given, I ran across Prof. Grant coming my way the evening before my talk.  He said, “Art, I’m not even going to talk about Wolf Creek.”  I was relieved but wasn’t sure what was going to happen.  I still don’t know why Prof. Grant or Dr. Mielke didn’t tell me this months or weeks in advance.  I was their nemesis, of course, and maybe it was as simple as that. Or, maybe I was being punished for the awful Durango Herald headline?  Who could blame them?

The next day despite what Prof. Grant had said, I was so nervous and sweating before my talk, that I grabbed a can of deodorant and sprayed my hair and forehead with it by accident before walking over to give it.  I thought I had grabbed a can of hairspray!

I opened my talk by telling the 300 or so scientists in the “joint meeting” audience that Wednesday about what I had done due to my nerves, spontaneously using it as my intro at this, my first conference presentation.  I followed this with a quip, “At least now my forehead won’t sweat.”  It got a good laugh, I relaxed some, and got through the 10 min talk that had caused so much stress beforehand.

I ended my talk on what I hoped was a conciliatory note: “Who wouldn’t have believed that all this wasn’t due to cloud seeding?”, referring to the large runoff anomalies of the three seeded seasons of the WCPE reported by Grant et al. 1969, later by Morel-Seytoux and Saheli (1973).  The chances that they were due to natural causes could be rejected with a 99% confidence level (the same level as the Skagit Project that was also misperceived as a cloud seeding success).

But, soberingly enough, it was beyond a doubt that natural storm factors are what had created those WCPE runoff anomalies that looked so much like the result of cloud seeding.  The key mistake by the experimenters in both the WCPE and the Skagit project s was NOT declaring controls in advance of operations.

It was at this meeting that Dr. Paul Mielke, Jr., told me later that, “we screwed up.”  What a terrific guy he was to say that!

Banff ended on a high note.  I often think how horrible it would have been if I had, indeed, “chickened out” due to the recurring fear I had after the Banff program came out.

October 1979:  All that the CRBPP had been based on was gone after Banff

 Retraction of the of the key Climax, CO, randomized wintertime cloud seeding successes first appeared in March 1979 (J. Amer. Stat. Assoc. by Prof. P. W. Mielke, Jr.); the results appeared to be part of a statewide pattern and not localized to Climax.   The results were verbally retracted by J. O. Rhea at Banff in October 1979.8  This occurred after so-called “downwind” increases in snowfall on the same days as seeding had seemed to have increased snow so much at Climax were found to be due to a natural bias.  Upslope winds that favored more snow on seeded days at downwind locations from Climax were more prevalent on those days (Meltesen et al. 1978) compromising the downwind seeding claims.

So, within six months in 1979, March through October, all that the CRBPP had been based on, which included my WCPE reanalysis published in May, was gone!   It can be argued that Mike McRae’s 1975 article set off a major chain reaction.

It was regrettable that the 1979 Banff program summary by Semonin and Hill, finally published in 1981 in BAMS, failed to acknowledge the historic retractions, or the critical unreliability of the Climax experimenters’ claims about cloud top temperatures that was presented by Prof. Hobbs.  Perhaps Semonin and Hill did not actually attend the conference?  Or forgot what had taken place?

However, Semonin and Hill, while missing those key elements, did take note of the historic “leafletting” of conference attendees by the CSU experimenters.  In their leaflet they claimed that the Hobbs and Rangno (1979) critique of the foundations of the CSU experiments got it wrong and defended their work. This is the only conference that I know of in which pre-session conflictive leafletting has been conducted.

The emotions surrounding journal work done on your own time and initiative

I am guessing that many young scientists, excited about their work, have had this experience with their first manuscript.

The manuscript of the WCPE reanalysis was sent out in March 1978, almost two and a half years after I began working on it in November 1975.  Prof. Peter Hobbs took a great interest in my unfunded work once I arrived in his group and told him about it after I was hired in September 1976.

Prof. Hobbs did not permit articles to be submitted to journals from members of his group without his going over them.  Due to Prof. Hobbs experience and editorial gifts, the drafts I brought in from home were steadily improved.

I had even done my own drafting of all of the 21 figures in the WCPE reanalysis, to give you an idea of the magnitude of this overall effort that I was so bonded to.  Here’s an example of one I did from the 1979 WCPE reanalysis publication:

As anyone could imagine, doing your own research, drafting your own figures, brings more “ownership” and emotional attachment than might be the case with funded research. This became only too clear when the long-awaited reviews of my reanalysis of the WCPE came back in a manila envelope in August 1978, sent from Dr. Bernard A. Silverman, the editor for this manuscript for the Amer. Meteor. Soc.’s Journal of Applied Meteorology.

It took me a week to open that envelope.  More palpitations; would my manuscript be rejected or accepted?

Eventually, I opened it and read the first review that Dr. Silverman had placed on the top of what turned out to be three reviewers’ assessments of my manuscript.

That first reviewer recommended, “reject.”

The reviewer had written that I had no business doing a reanalysis of the CSU work; I didn’t have the background to do it and the paper should be rejected.  There was no real criticism of the contents of my manuscript. Nevertheless, I wept uncontrollably, shaking; I was going to fail in my monumental effort.

That “reject” reviewer was only too correct concerning my lack of a technical background to do what I had tried to do. But it was also clear to me after several years after 1975, that a better credentialed researcher was not going to be looking into the original CSU experiments the massive CRBPP had been based on.   That would have been risky.   It was much better for all involved to walk away from the CRBPP, claiming it was not conducted properly, rather than to learn that millions were spent conducting it due to prior reports of cloud seeding increases in snow that were illusory.

 I showed a graduate student friend, Tom Matejka, that first reviewer’s reject letter.  Tom, laughing, drew the following cartoon of how he thought that reviewer saw me:

 I still treasure this political cartoon by Tom.

But, unknown to me at this same time, CSU cloud seeding researchers were on the brink of retracting their results for the more prestigious Climax experiments.

My five-season experience as a forecaster, and having worked under orographic precipitation specialist, J. Owen Rhea, during the CRBPP gave me the knowledge and wherewithal to do it.  It may sound “crackpotty”, but I felt I had a responsibility to do it since no one else was going to and I “knew the territory.”  I couldn’t just walk away from it.  All that was learned during the CRBPP strongly suggested there could not have been snow increases due to seeding in the prior CSU experiments.

============

It took me about another week to look at the other reviews contained in that manila envelope Silverman had sent as I pondered the size and effort I had put into what surely was going to be Anand content in  enormous failure.  I am sobbing right now remembering that time; tears flowing!9 Where did this come from?  I haven’t thought about this chapter of my life in decades, but it’s like the same exact feelings I had so long ago have body-slammed me as I write about them!  Maybe I need a grief counselor…

When I finally had the courage to look at the other reviewers’ assessments, they both recommended, “accept” with revisions.

I wept uncontrollably again.  I was going to “get in” after all, though it would now be without Prof. Hobbs purview in carrying out “revisions” required by the reviewers.   Why did Prof. Hobbs wash his hands of my effort at this point?  Answer:  over the placement and content in an acknowledgement.

————

Professor Hobbs washes his hands of the WCPE manuscript before the final submission

By the time that the reviews had come in, Prof. Peter Hobbs had washed his hands of my manuscript.  Prof. Hobbs had written an acknowledgement for himself and had placed it ahead of that for J. Owen Rhea whom I had originally placed first.  Owen Rhea was the initial lead forecaster for the CRBPP, and later, Acting Project Manager under whom I worked.  I had learned so much working for him concerning orographic precipitation patterns.  I don’t recall that I had thanked Prof. Hobbs in those early drafts after he improved them.  I only have a  1977 draft, prior to Peter’s scrutiny in which this acknowledgment appeared in which I REALLY wanted to thank the CSU’s Prof. Grant and his staff:

“Acknowledgements. The author would like to thank Paul Willis of the National Hurricane Research Laboratory and Dr. J. Owen Rhea of Colorado State University who, as Project Manager and Project Forecaster, re­ spectively, for the first season of the Pilot Project, provided many insightful and illuminating discussions of the Colorado State University cloud seeding experiments which helped inspire this paper. I would also like to thank Professor Lewis O. Grant and the staff of Colorado State University for their unhesitating cooperation and willingness to examine “both sides of the coin.” Appreciation is also given to Mr. Larry Hjermstad of Western Weather Consultants in Durango for his cooperation in providing climatological data and copy facilities at a low cost, and Mr. Travers T. Ward for copying it all.”

The 1979 acknowledgement in the WCPE reanalysis publication was this:

“Acknowledgments. The author wishes to extend his deepest appreciation to Dr. J. Owen Rhea for his in­ valuable encouragement, comments and criticism during the course of this research. Particular thanks is also due Professor Peter V. Hobbs whose cogent editing and restructuring of this paper greatly improved its presentation and coherence. A review by Dr. Colleen A. Leary also improved the intelligibility of this paper. I would also like to thank Professor Lewis 0. Grant and the staff of Colorado State University for their unhesitating cooperation and willingness to supply data and, other information relative to the WCPE.  Appreciation is also extended to the Bureau of Reclamation, Division of Atmospheric Water Re­ sources Development, and to Mr. Larry Hjermstad for supplying data relative to the Colorado River Basin Pilot Project. The author is also indebted to Mr. Travis T. Ward of Durango for his copying of the numerous copies of Climatological Data requested by the author.”

Peter Hobbs also suggested at one point that he would normally be a co-author after editing and improving the presentation of manuscripts like mine.  I didn’t take the hint; maybe I should have?

I journeyed on and the revised version of the manuscript went to the journal in the fall of 1978 without Peter Hobbs’ expert purview.  I had now alienated perhaps my only ally, certainly the most important one.

Speculation on the fallout from the acknowledgement kerfuffle with Prof. Hobbs

The above happenstance may also explain why Prof. Hobbs took first authorship on the reanalysis I did of the Skagit Project (Hobbs and Rangno 1978) done on my own initiative, but while at work in Prof. Hobbs’ group.  It was submitted to the journal after the WCPE manuscript was submitted but was accepted and published ahead of it. I then I became concerned that it might appear that Prof. Hobbs had directed me, a little-known player in the weather mod game, in the WCPE paper that was to follow.  It would make sense that a grand player in the weather mod arena like Prof. Hobbs had directed an under credentialed subordinate on how to reanalyze cloud seeding experiments.

An inappropriate authorship sequence was the case, too, in the work I did that undermined the foundations of the Climax and Wolf Creek Pass experiment that was published as, “Hobbs and Rangno” 1979, J. Appl. Meteor.  Prof. Hobbs even presented this work as a sole authored work at the International Conference on Cloud Physics at Clermont-Ferrand.   I acceded to these authorship acts, though they were unsettling.   Only recently did I blow a gasket when I discovered this caption under Figure 2 of Hobbs (1980):

Issues of credit and authorship within Prof. Hobbs’ group have persisted right up until today (2021), when a senior faculty member, formerly in Prof. Hobbs’ group, could not cite a paper on rainbands where Prof. Hobbs was the lead or sole author because he had not done the work and knew who did.  I know that a reader at this point would say, “Get over it!”  Sorry, can’t.

 

ALR, with a life story vignette by someone who only wanted to forecast weather when he came to Durango. Thanks for reading it, if you do.

==============FOOTNOTES========================

1An example of a pen and ink spreadsheet I did in the late 1970s for those younger researchers who can’t imagine such a thing. You can’t imagine how many of these kinds spreadsheets I did in support of the WCPE reanalysis!  Dozens at least. Bottles of Shaefer’s ink were consumed!

2I remembered, Ann Stone, and that third grade math humiliation where Ann was to add up a column of five of the same number, and I was to multiply that number by five, all this with both of us at the blackboard in front of the class.  I was to demonstrate how much faster multiplying something was than adding up a column of the same number.   I couldn’t do that multiplication while Ann finished quickly.

6J. O. Rhea, Prof. Grant’s grad student, personal communication,  1975.

3The Bureau of Reclamation specified that the seeding contractor, E. G. & G., Inc., personnel draw their own regional surface, 700 and 500 hPa weather maps rather than rely on National Weather Service facsimile maps. I was a good weather map drawer/artist.   Since it’s fall, I will use this map with a bit of humor in it.

4Recently, having a different perspective, I have deemed this Durango Herald article as a tongue-in-cheek, “Historic Moments in Weather History:  “Art Rangno EXPLODES onto the weather mod scene”, a title meant to generate a smile.    I was to work on reanalyses and critical commentaries on cloud seeding experiments for the next 45 years!  Still am!  What is the matter with me?  Get a life!  Haha, sort of.

5That was to happened later….several years later, and had to do with asking for an investigation of some possible real science crime; withholding results that might have prevented the multimillion dollar CRBPP randomized cloud seeding experiment from taking place.

7I was going to take the place of their, “Flight Meteorologist,” Don Atkinson, who later confided in me that he thought the job I was going to take, his, was a “dead end.”   Atkinson was resigning to go get his master’s degree in business administration. He eventually returned as the business administrator for the University of Washington’s Atmos. Sci. Department.

8Rhea presented for Grant et al. who was officially listed as the presenter.

9That surprise grief attack happened a few months ago when I first started rehashing this “life chapter” after forgetting about for so many decades.   I seem more inured to emotions about this as I go through  draft today.

 

 

 

CHAPTER 5: GOT PUBLISHED! (I.E., “RAIN FROM CLOUDS WITH TOPS WARMER THAN -10°C IN ISRAEL”)

I was so excited…

 My trip, and the analysis of the data that came out of it,  was the first published report that something was not right with Prof. Gagin’s cloud reports.  My publication appeared in the Quart. J. Roy. Meteor. Soc., Rangno 1988, “Rain from Clouds with Tops Warmer than -10°C in Israel,” hereafter, “R88,” found here).  My manuscript was “communicated” to the Quart. J. Roy. Meteor. Soc. by the director of our airborne research group,  Prof. Peter V. Hobbs, a member of the Royal Society eligible to submit papers to that journal.  (I was not).

Neither Prof. Hobbs nor I believed that my paper refuting the many published descriptions of Israeli clouds by Prof. Gagin could be published in an American Meteorological Society journal.  Too many potential reviewers had heard Prof. Gagin’s presentations on too many occasions, or read his journal papers,  to believe that what he was saying could be so much in error.

R88 was based on rawinsonde-indicated cloud tops when it was raining at the launch site or within an hour and a half, so it was fairly primitive.  Why I had only rawinsonde data and not data from Prof. Gagin’s 5-cm modern radar data as was explained in Chapter 4.

Nevertheless, my “primitive” findings were confirmed several years later in independent airborne studies (e.g., Levin 1992, 1994, preprints; Levin et al. 1996, J. Appl. Meteor.) and on several occasions since then (e.g., Freud et al. 2015).  Spiking football now!

Why Prof. Gagin’s cloud reports were likely in error and how much they deviated from comparable clouds was shown in Rangno and Hobbs 1988, Atmos. Res.

I had experienced cloud seeding “delusionaries” in Colorado during the CRBPP, namely, credentialed “scientists” who believed things that weren’t true and even published things they knew weren’t true (as Grant and Elliott had done in 1974, J. Appl. Meteor.).  I sensed that Prof. Gagin might be one of those.  He and his staff also had a lot to lose if the clouds of Israel weren’t so ripe for seeding as his descriptions painted them.

I reprised my 1988 published findings from my trip to Israel in a University of Washington Atmos. Sci. colloquium in February 1990. I was motivated by the J. Appl. Meteor. memorial issue to Prof. Gagin in October 1989.  Here’s the flyer for that talk, intended to draw interest with some topical humor concerning the Iran-Contra affair that was in progress while I was in Israel in 1986 (unknown to me at the time):

End of life story.  I consider this episode concerning Israeli clouds my greatest, costliest, volunteer science contribution of the several reanalyses that I did on my own time and dime.

Sincerely,

Art