Thunderblasts after midnight awaken sleeping Catalinans with 50 mph winds, graupel, and R++; latest storm total now 1.38 inches!

In case you don’t believe me that over an inch fell, this digital record from Sutherland Heights with writing on it:

20170120-21 rain day
Your last 24 h of rain in the Sutherland Heights, Catalina, Arizona, USA. Total resets at midnight.

Probably a little more to come, too.  Got some blow damage, I’m sure.  Will be looking for roof shingles around the yard today.

12:45 AM. Your radar and IR satellite imagery for our blast last night from IPS MeteoStar
12:45 AM. Your radar and IR satellite imagery for our blast last night from IPS MeteoStar .  That tiny red region near Catalina represents hail and/or extremely heavy rain.

And, as everyone knows from their favorite TEEVEE weatherperson, “New Storm to Pound SE Arizonans!”  Begins Monday night, Tuesday AM.  May have snow in it as it ends.

Your know, its no fun telling people what they already know, so lets look ahead beyond the normal forecast period of great accuracy, beyond not seven days, not eight, but beyond TEN days!

First, we set the stage with a ten day look ahead (from last evening) in a NOAA spaghetti factory plot:

Valid for 5 PM, Monday, January 30th. If you've not seen this, you'll be screaming "warm in the West, and damn Cold in the East." Its a common pattern often associated with some of the driest years in the West when it recurs over and over again during a winter.
Valid for 5 PM, Monday, January 30th. If you’ve not seen this, you’ll be screaming “warm in the West, and damn Cold in the East.” Its a common pattern often associated with some of the driest years in the West when it recurs over and over again during a winter.

This plot indicates that the pattern of a towering, storm-blocking ridge is certain along the West Coast by ten days–will be developing for a day or three before this,  That ridge represents an extrusion of warm air aloft over the entire West Coast extending all the way into Alaska.  The couple of red lines in and south of AZ are due to the change of a minor, likely dry, cutoff low in our area about this time (plus or minus a day).

In other words, this plot suggests a warmer, dry period develops over AZ, and storms are shunted from the Pacific Ocean, located west of the West Coast, all the way to Anchorage and vicinity,  They will  be welcoming a warm up in weather up thataway at some point in this pattern.

Is that it, then, for the AZ winter precip?  It could happen.  Just one more storm after the current one fades away today?

Hint:  Sometimes anticyclone ridges like the one in the plot above get too big for their britches, and fall away, or, break off like a balloon from a tether, and a warm blob of air aloft sits at higher latitudes, often floating off to the northwest.

The exciting ramification of this latter scenario is that in the “soft underbelly” of the “blocking anticyclone” (as in American football), the jet stream throws something of a screen pass, goes underneath the belly of the blocking high,  and races in toward the West Coast at lower latitudes.  Having done so, such a break through pattern (“Break on through to the Other Side”) results in heavy rains in Cal and the Southwest.

Izzat what’s going to happen?

Let us look farther ahead, unprofessionally, really,  and see if there is evidence in spaghetti for such a development and you already know that there must be because it would explain why I am writing so much here.  Below, the EXCITING spaghetti plot strongly indicating break through flow breaking on through to the other side, i.e., the West Coast,  from the lower latitudes of the Pacific:

Valid on Thursday, February 2, at 5 PM AST. Flow from the lower latitudes of the Pac will, in fact, break on through to the other side, as told in song by the Doors1.
Valid on Thursday, February 2, at 5 PM AST. Flow from the lower latitudes of the Pac will, in fact, break on through to the other side, as told in song by the Doors1.  Who knows what they were talking about but here we’re talking about a jet stream….

Well, we’ll see in a coupla weeks if CMP knows what he is talking about..  I think this is going to happen, resembles what’s happening now, and weather patterns like to repeat, more so within the same winter.  However, how much precip comes with this pattern will be determined by how much flow breaks on through to the other side….

Yesterday’s clouds

Let us begin our look at yesterday’s clouds by looking back three days ago before the Big Storm.  We had a nice sunrise.   Here it is in case you missed it:

DSC_1680
7:21 AM. Altostratus sunrise. Virga is highlighted showing the precipitating nature of Altostratus. Amount of virga can vary.
DSC_1686
7:31 AM. Same kind of view, different colors.
DSC_1689
7:40 AM. Highlight on the Tortolitas. This is why you carry your camera at all times.
9:04 AM. Pretty much solid gray after that nice sunrise for the rest of the day with cloud bases lowering and raising. Early on, cloud bases were well above 10,000 feet; i. e;, above Mt. Lemmo, and would be called, "Altostratus opacus." The virga is very muted, and there are embedded droplet clouds as well as a droplet cloud layer (Altocumulus) encroaching on the right. Estimated ceiling here: 12,000 overcast." (Pronounced, "one-two thousand overcast" if you want to make your friends think that maybe you were a pilot at some time in your life.)
9:04 AM. Pretty much solid gray after that nice sunrise for the rest of the day with cloud bases lowering and raising. Early on, cloud bases were well above 10,000 feet; i. e;, above Mt. Lemmo, and would be called, “Altostratus opacus.” The virga is very muted, and there are embedded droplet clouds as well as a droplet cloud layer (Altocumulus) encroaching on the right. Estimated ceiling here: 12,000 overcast.” (Pronounced, “one-two thousand overcast” if you want to make your friends think that maybe you were a pilot at some time in your life.)
12:58 PM.
12:58 PM. Clouds began to appear on Samaniego Ridge as the moist air above us lowered steadily.  However, due to lowering cloud tops, the ice in the higher overcast layer was gone. Here there are two layers above the scruff of Stratus fractus (I would call it) on the ridge.  The lower one looks like its a Stratocumulus, and the higher one a solid layer of “Altocumulus opacus.”  Its already rained some, and we were in between storm bands.
2:48 PM. Looked like the Altocumulus opacus (stratiformis, if you want to be exactly correct) was breaking up just enough for a sun break. But no, kept filling in as it headed this way from the southwest.
2:48 PM. Looked like the Altocumulus opacus (stratiformis, if you want to be exactly correct) was breaking up just enough for a sun break. But no; it kept filling in as it headed this way from the southwest.  No ice, or virga evident, so tops are pretty warm, probably warmer than -10° C (23° F) would be a good guess. Hah!  Just now looked at the TUS sounding and tops were indicated to be at -11° C, still very marginal for ice (absent drizzle drops in clouds, which causes ice to form at much higher temperatures, but you already knew that.)
4:24 PM. Small openings allowed a few highlights to show up on the Catalinas underneath that Altocumulus opacus layer.
4:24 PM. Small openings allowed a few highlights to show up on the Catalinas underneath that Altocumulus opacus layer.  And  clouds were still topping Ms. Mt. Lemmon, indicating a good flow of low level moisture was still in progress.

Moving forward to only two days ago, the day preceding the nighttime blast:  a cold, windy day with low overcast skies all day, shallow, drizzle-producing clouds, something we don’t see a lot of here in Arizona.

8:08 AM, January 20th, 2017, btw. "Gray skies, nothin' but gray skies, from now on", by Irving B.
8:08 AM, January 20th, 2017, btw. “Gray skies, nothin’ but gray skies, from now on”, by Irving B.  Stratus fractus underlies an overcast of Stratocumulus.  Some light rain is falling toward Romero Pass on the right.
8:10 AM. A really special shot. Stratus with drizzle is a very difficult photographic capture. I can feel how enthralled you are with this view toward Oro Valley. You know, I do this for YOU.
8:10 AM. A really special shot. Stratus with drizzle, shown here,  is a very difficult photographic capture. I can feel how enthralled you are with this scene toward Oro Valley. You know, I do this for YOU.  Look how uniform the gray is!  It just takes your breath away!
9:44 AM. Before long, drier air down low moved in, eradicating our beautiful Stratus layer, leaving only holdouts (Stratus fractus) along the Catalina foothills below the heavy layer of Stratocumulus.
9:44 AM. Before long, drier air down low moved in, eradicating our beautiful Stratus layer, leaving only holdouts (Stratus fractus) along the Catalina foothills below the heavy layer of Stratocumulus.
10:20 AM. The wind had now shown up, and these ragged, shredded shallow Stratocumulus shedding drizzle or very light rain showers stormed across the Catalina Mountains. This was quite remarkable sight, since such shallow clouds as these are more often seen in clean maritime locations like Hawaii. Scenes like this suggest that the cloud droplet concentrations were very low, and that there were larger than normal cloud condensation nuclei on which the drops could form, getting a head start in the sizes needed to produce collisions with coalescene (larger than 30 microns in diameter (about one third to one half a human hair in diameter, for perspective.)
10:20 AM. The wind had now shown up, and these ragged, shredded shallow Stratocumulus shedding drizzle or very light rain showers stormed across the Catalina Mountains. This was quite remarkable sight, since such shallow clouds as these are more often seen in clean maritime locations like Hawaii. Scenes like this suggest that the cloud droplet concentrations were very low, and that there were larger than normal cloud condensation nuclei on which the drops could form, getting a head start in the sizes needed to produce collisions with coalescene (larger than 30 microns in diameter (about one third to one half a human hair in diameter, for perspective.)

 

3:12 PM. Lower, drier air moved in, eradicating the Stratocumulus and revealing the rarely seen Nimbostratus precip-producing layer. This layer, considered a mid-level cloud, is usually obscured by, you guessed it, Stratocumulus clouds.
3:12 PM. Lower, drier air moved in, eradicating the Stratocumulus and revealing the rarely seen Nimbostratus precip-producing layer. This layer, considered a mid-level cloud, is usually obscured by, you guessed it, Stratocumulus clouds.

By the end of the day, the clouds had lowered again, and we were about to have a very interesting night!

5:01 PM.
5:01 PM.

The End

———————-
1Remember how great we hippie relics thought that first Doors album was? Later, the Doors, and that era were to be made fun of by 80s punk and humor group,  The Dead Milkman in “Bitchin’ Comaro.” (Its worth a listen.)

 

 

2 thoughts on “Thunderblasts after midnight awaken sleeping Catalinans with 50 mph winds, graupel, and R++; latest storm total now 1.38 inches!”

  1. I’ve been “waiting for the sun” since last September, Art, so I don’t mind a few days of that blocking ridge.

    1. HI, Roland,
      I can really understand that as an old Seattle-ite. For awhile the models went completely away from that, but are starting resurrect blocking pattern in the Gulf of AK again. However, undercutting flow is a little too far north from where I thought it would be and what spaghetti suggested in those red (564 dm height lines). So, might go down on that one!

      a

Comments are closed.