Review and Enhancement of “Literature Review and Scientific Synthesis on the Efficacy of Orographic Cloud Seeding”

PROLOGUE

Dr. Reynolds, the sole author of this monumental review I critique  has done a masterful job of surveying an enormous amount of cloud seeding literature in his “draft” report to his former employer, the Bureau of Reclamation.  The BOR was  the primary sponsor of cloud seeding programs throughout the West in the 1960s to the 1980s.  However, as was also seen in a recent review of the 2009 Springer book,  “Impacts of Aerosols on Precipitation,” such a task appears to be too much despite Reynold’s valiant efforts to “get it right.”   Reynold’s discussions of the benchmark randomized experiments in Colorado that led to the nation’s largest, most costly randomized orographic cloud seeding experiments, the Colorado River Basin Pilot Project, is an example of the problem of having too much to review and not enough time to scrutinize the details of so much literature.

Reynold’s review is well-written, most of the necessary citations are in it that help the reader to understand the topic.    That is,  except for those elements in his review that I am perhaps, a little too familiar with and I feel must be addressed in this VERY belated review of his 2015 draft report.

“Too familiar?”

That’s what happens to someone who has spent thousands of volunteer hours (crackpot alert!) rectifying faulty cloud seeding and cloud claims in peer-reviewed journal articles because he felt, “Someone has to do something about this!” (Second crackpot alert, with possible megalomaniacal implications).   I was employed as a weather forecaster for the Colorado River Basin Pilot Project for all of its five winter operating seasons, 1970/71 through 1974/75.  No one can know about that project and the faulty literature it was based on more than me.  I came in naive and idealistic about the scientific literature on cloud seeding;  I didn’t leave that way

I was not asked to review Reynold’s 2015  review before he posted his report to the BOR  online as a “draft,” the status it retains as of today.   I contacted Dr. Reynolds recently and informed him that I had a few comments on and corrections to his review.  He replied that he was not interested in correcting his review or making changes at this time.  This seemed odd to me, so here we are.

Also, in the spirit of “author disclosure,” I should mention that Dr. Reynolds was also an informal reviewer of my manuscript co-authored with Prof. Dave Schultz, Manchester U., on the history of the BOR-funded Colorado River Basin Project.  It was recently rejected by the J. Appl. Meteor.  due to length.  We are in the process of seeing where that manuscript can be trimmed down without losing  important parts of the story.

The comments pn Reynold’s review would have likely been unnecessary had I reviewed it beforehand, or if Dr. Reynolds  wished to consider my comments and corrections today.    I was well known to Dr. Reynolds as an expert on clouds, cloud seeding, and the weather  in Colorado and Israel ;  he had previously cited my work his 1988 article in the Bull. Amer. Meteor. Soc.   With Professor Peter V.  Hobbs in tow, I dissected those landmark experiments in Colorado and Israel and showed they were, as Foster and Huber (1997) described faulty science,  “scientific mirages.”  They were “low-hanging fruit” that poor peer reviews of manuscripts had let in, mostly, appearing Amer. Meteor. Soc. journals.  It didn’t take a genius to unravel them.

Dr. Reynold’s comprehensive  review can be found here.  It is too long to be a blog post here that includes my embedded comments.  Since I am only commenting on certain sections,  I have extracted only those portions of Reynold’s review where I have made comments.  It may be that only those familiar with this topic, orographic cloud seeding, will be interested, but, oh, well….  It has to be done even if for only ONE person!

My goal is to be objective and not short change Reynolds’ work on what is really an astounding effort.  It would take me two lifetimes to do what Dr. Reynolds has done.

I also believe Dr. Reynold’s made a great effort to be objective in discussing a topic that almost always brings controversy.  The literature in this field is filled with pro-seeding partisans that have often edited results so that cloud seeding has been presented with a happier face than it should have been.  After all, no one got a job saying cloud seeding doesn’t work (is not viable for producing worthwhile amounts of water.)

Considering his background in the cloud seeding arena, Reynolds final conclusion, copied below, must be considered an example of high integrity and his conclusion is one that this author fully agrees as of this date:

“5.3.2 Final Conclusion 

Based on both the historical evidence and the last decade of research, it is reasonable to conclude that artificial enhancement of winter snowpack over mountain barriers is possible. It is very difficult to quantify the seasonal increases to be expected both in snowpack and subsequent spring runoff. This is because each target area has to be investigated as to the meteorology of the winter clouds and their seedability, and the engineering aspects of effectively seeding the clouds to maximize increases. Winter orographic cloud seeding should thus continue to be supported both from the scientific and operational community working together to further the science and operational outcomes. It must be stated however, that as of yet, no rigorous scientific study conducted as a randomized confirmatory seeding experiment with pre-defined primary response variables and requiring an established threshold of statistical significance has demonstrated that seeding winter orographic clouds increases snowfall. As such, the “proof” the scientific community has been seeking for many decades is still not in hand. “

================THE REVIEW=================

My comments, corrections and question on Dr. Reynolds review begins below and are in a red font.   Highly relevant citations are missing  and there are citations in the Reynold’s references that do not appear in the text.  The missing ones, annotated with a “u” ,  have been added at the end of this review.

The portions of Reynold’s review that I examined begins here:

———————————————————————-

1.0 Introduction 

1.1. Introduction to Winter Orographic Cloud Seeding In its most basic form, artificial seeding of clouds for precipitation enhancement can be divided into two broad categories: 1 – cloud seeding to enhance rainfall i.e. summer convection, 2 – winter orographic cloud seeding to enhance snowfall. The scope of this paper is only concerned with the latter. Winter orographic cloud seeding occurs when very small particles, typically silver iodide, are introduced into a cloud which is below freezing. The cloud moisture collects onto the small particles, freezing the moisture into tiny ice crystals which continue to grow until they become too heavy to remain in the cloud and then fall out as precipitation (typically snow). This process can happen rapidly on the windward slopes of mountains allowing the snow to fall near the crest of the mountain which causes a local enhancement to the amount of precipitation that would have fallen naturally (Figure 1.1).

The situation is complicated if the natural crystals are becoming rimed and due to riming, fall more quickly.  Adding more ice crystals via cloud seeding may result in raising their trajectories by reducing riming and the snow may not be increased snow where it is wanted, or will evaporate in the descending, drying  air on the lee side.  The schematic below would be valid for naturally non-precipitating clouds.  

The properties of clouds that don’t naturally precipitate vary with location.  Maritime clouds along the west coasts of continents generally can precipitate without ice.  Farther inland, where the clouds become impacted by natural and anthropogenic aerosols, ice is generally required for precipitation and may not develop until cloud tops are cooler than about -12°C.  These latter non-precipitating clouds make viable seeding targets.

Figure 1.1 – Simple model of winter orographic cloud seeding. 1 – Introduction of seeding material, 2 forced ascent due to topography, 3 – enhanced precipitation falling out of cloud. 

1.3 Relevance and Need for a Reassessment of the Role of Winter Orographic Cloud Seeding to Enhance Water Supplies in the West 

Weather modification is most commonly conducted through “cloud seeding,” the introduction of chemical agents with the intent of affecting precipitation processes. A number of academic and private entities exist that offer services to states and local governments with the aim of increasing water supplies through inducing precipitation volumes above which would occur naturally. From the 1960s through the 1980s, Reclamation was involved in a variety of weather modification initiatives in the west under Project Skywater. This project included the Colorado River Basin Pilot Project, the High Plains Experiment (summer only), and the Sierra Cooperative Pilot Project. Project Skywater was terminated in 1988, but Reclamation continued to be involved with weather modification efforts. Reclamation participated in the development of the California Department of Water Resource’s design and conduct of the Oroville Reservoir Runoff Enhancement Project from 1988 until 1994. Reclamation also supported other efforts through the mid-2000s, including the Weather Damage Modification Program. 

Based upon scientific literature through 2006 and discussions with experts in the field, the efficacy of weather modification appears to be unsettled. In 2003, the National Research Council (NRC) report “Critical Issues in Weather Modification Research” (NRC 2003), concluded that “there is still no convincing scientific proof of the efficacy of intentional weather modification efforts”. The NRC goes on to state that new technology allows for potential new research to help understand the process of precipitation and if weather modification is a viable means to increase water supplies. 

The NRC 2003 review of cloud seeding cited above  did not measure up to the one the NRC published in 1973.  I reviewed NRC 2003.  If anyone cares, can be found here:         

 A Critical Review of NRC 2003 Critical issues in weather modification NATIONAL ACADEMIES PRESS

As seems to be typical of reviews, there was just too much literature to review for the scientists involved, and also likely, not a top priority for those assigned to this task having other research on their plates.   Prof. Hobbs, with my acquiescence, helped compromise this review by declining an offer by Prof. Garstang, chair of the review committee, to review before it was published, a huge mistake.  Garstang admonished  Peter to not to comment on it AFTER it came out.  But that’s exactly what Peter told me we would do if needed.  I nodded and went back to my desk.  He said we would have “more impact” by doing that.  I hope you appreciate getting stories from behind the scenes.

In 2002-2003, Reclamation funded, through earmarks, weather modification studies in the states of Nevada, Utah, California, North Dakota, and Texas. The studies did not provide convincing scientific evidence that weather modification reliably generates additional water. However, there are a number of studies, including from within Reclamation (Hunter 2004 – cited within LBAO (Lahontan Basin Area Office) EA discussed later), that indicate that cloud seeding can significantly increase precipitation amounts for targeted locations. 

Statement on the Application of Winter Orographic Cloud Seeding For Water Supply and Energy Production 

In 2005, Reclamation primarily stopped involvement in weather modification efforts at the program level. As identified within Q&As developed by the Research and Development Office explaining Reclamations abandonment of the practice: 

•Weather modification is not an operational function of Reclamation.

•In a letter dated December 13, 2005, sent to then-Texas Senator Kay Bailey Hutchison(R), the White House Office of Science and Technology Policy (OSTP) said there aresignificant concerns about liability and legal ramifications of weather modification,including whether weather modification can be demonstrated to actually be effective.

Since 2006, continuing drought conditions, and a strong interest amongst some Reclamation stakeholders, Reclamation engaged in two research projects related to weather modification in support of cold-season snowfall enhancement. 

•In 2010 the Mid-Pacific Region’s LBAO finalized an Environmental Assessment (LBAOEA) proposing to provide $1.35 million from Reclamation’s Desert Terminal LakesProgram to the Desert Research Institute (DRI) for a cloud seeding project in the WalkerRiver Basin.

•At a March 12, 2014 meeting of the Upper Colorado River Commission, weather modification was specifically identified as one of three activities that the Upper Basin states propose to include within their drought contingency plans. The Upper Basin states asked that Reclamation provide partial support for Wyoming’s eighth year (2014) of an ongoing weather modification study / program being conducted with the National Center for Atmospheric Research (NCAR). This request resulted in Reclamation’s Upper Colorado Region obligating $200,000 to the State of Wyoming for weather modification research and development efforts conducted by NCAR, with these monies obligated through an amendment to an existing cooperative agreement between Reclamation R&D and Universities Corporation for Atmospheric Research.

The Upper Basin states have noted that state and private entities in Colorado and Utah spend over $1M and $500,000 respectively on weather modification, and estimate efficacy between 6% and 20%. At the low end, the Upper Basin states identify that a benefit of 6% is inexpensive water within the Colorado River Basin. The Upper Basin states have argued that Reclamation’s documents from the 1960s – 1980s identified positive results of weather modification.

This above section needs supporting references for the assertions made about seeding results, the benefit claim, and who are those “Upper Basin States”?  Otherwise these statements should be taken with extra caution.

1.5 Brief History of Federal and State Authorizations for Weather Modification 

The following is taken from Chisolm and Grimes (1979): 

In 1968, the Colorado River Basin Project Act of 1968 (Public Law 90-537) was passed by Congress to provide for the further comprehensive development of water resources of the Colorado River Basin and for the provision of additional and adequate water supplies for use in the upper as well as lower Colorado River Basin. Under Title II of this Act, the Secretary of the Interior was authorized to prepare and implement an augmentation plan to meet the water requirements of the new projects created by the Act (Central Arizona Project and Colorado River Storage Project), existing projects and water allotments, and the 1944 water treaty with Mexico. 

Augmentation was one of the main issues in the deliberation on the Act. The Act defines augmentation as, “ ‘augment’ or ‘augmentation’ when used herein with reference to water means to increase supply of the Colorado River system or its tributaries by introduction of water into the Colorado River system, which is in addition to the natural supply of the system.” The Statement of the Managers on the part of the House with regard to augmentation stated “all possible sources of water must be considered, including water conservation and salvage, weather modification, desalinization and importation from areas of surplus.”

The Colorado River Basin Pilot Project (CRBPP) was the Bureau’s first major effort on weather modification in Colorado under the auspices of Project Skywater and P. L. 90-537. The purpose of the Colorado River Basin Pilot Project was to provide for scientific and economic evaluation of precipitation augmentation technology and to increase precipitation. The specific objectives to be achieved were (l) to establish and operate a ground-based meteorological network in and near the San Juan Mountains of Colorado to provide data input in the selection of suitable storms for seeding, and (2) to establish and operate a ground-based silver iodide seeding system to increase snowfall in the project target area. The field phase of CRBPP began with the winter of 1969-1970 (installation of gauges and seeding generator siting) while the random seeding phase began with the 1970-71 season and ran through the 1974-75 season (not the 1973-74 season as the author stated).

Date corrections are needed from the original text, not a good sign of the author’s knowledge concerning the CRBPP.  What is incomprehensible is that the goal of replicating the large percentage increases in snowfall reported in three randomized experiments by the author’s former home institution, Colorado State University, is left out of this rationale for the CRBPP.  Surely, the author knew, also as a long term BOR cloud seeding division employee, that those experiments were the primary motivation for the BOR to spend $40-50 million (in 2023 dollars) on the CRBPP.

At about the time of completion of CRBPP in Colorado, the Bureau began funding Project Snowman in Utah. Project Snowman was conducted for the Bureau by Utah State University’s Water Research Laboratory. The objective of this four-year project was to develop cold-cloud seeding technology using airborne generators and ground-based generators located in the northern portion of the Wasatch Mountains.

References are also needed here.

The Bureau’s early work on precipitation augmentation in Colorado was based on a fairly extensive background of research activities. Three major research efforts in winter seeding contributed directly to the Bureau’s CRBPP project in the Upper Colorado River Basin. These were: 

  1. The National Science Foundation sponsored research experiments by Colorado State University at Climax, Colorado, during the 1960’s.

“1” above is not a sufficient description of the motivation for the CRBPP.  The Climax experiments were reported on numerous occasions in the peer-reviewed literature as cloud seeding successes when air mass temperatures were high (i. e., high 500 hPa and 700 hPa equivalent temperatures as by Grant and Mielke 1967u, Kahan et al. 1969u, Grant et al. 1969u, Mielke et al. 1970u, 1971u, among others).  The BOR had a LOT of peer-reviewed evidence on which to base the CRBPP and in particular, in the Grant et al. 1969u Interim Report to the BOR that described the results of the Climax I results, and the preliminary results of Climax II and the Wolf Creek Pass experiments.  The findings in these three experiments, as described by Grant et al. 1969u,  were remarkably supportive of one another.  Climax II was a confirmatory experiment; nothing was changed from Climax I.

2. The operational research funded by the State of Colorado during the 1960′ s at several mountain passes, particularly Wolf Creek Pass in the San Juan Mountains, and,

The Wolf Creek Pass experiment mentioned above was a six winter season,  fully RANDOMIZED  experiment where entire winter seasons were randomized.  This experiment was critical to where the CRBPP was located since it appeared to have produced more water than seeding had in northern Colorado where the Climax experiments took place.

3. The Bureau sponsored experiments in the Park Range near Steamboat Springs, Coloradoduring the late 1960’s.

Rhea et al.’s 1969u “Final Report” to the  BOR concerning the Park Range Project  is eventually cited by Reynold’s, but is not in Reynold’s references.  This report was a “heads up” on all the problems that would be “rediscovered” during the CRBPP (e.g, as reported in Willis and Rangno 1971u).

The results of the Colorado River Pilot Project indicated the need for further verification and improvement in technology before a large augmentation program could be undertaken again.

This is a vague description of the CRBPP results, perhaps intentionally so. Why not just say what happened for the reader right here in plain language?   “The results of the earlier CSU experiments could not be replicated in the CRBPP (Elliott et al. 1978u followed by a citation to the “Comments” on Elliott et al’s findings by Rangno and Hobbs 1980-the latter reference is contained in Reynold’s references but is not discussed in his review.   Later, it was discovered that those early optimistic CSU results and the microphysical foundation on which they rested on were all ersatz leaving no real basis for the CRBPP  (e.g., Mielke 1979u, Rangno 1979u, Hobbs and Rangno 1979u, Rhea 1983, Rangno and Hobbs 1987u, 1993, 1995a, u)”

The Wolf Creek Pass seeding effort was designed to test whether a viable signal in runoff from Wolf Creek Pass could be produced by seeding all winter.  The Wolf Creek Pass experiment, conducted from the winters of 1964/65 through 1969/70 produced stunning results when the three randomly chosen seeded seasons were compared with the long historical runoff record (Grant et al. 1969u, Morel-Seytoux and Saheli 1973u).  Furthermore, the results of seeding on  individual days during the seeded winters appeared to replicate the results of Climax I.  It doesn’t get any better than this for a trifecta of apparent cloud seeding successes!  

But, it was all a mirage (e.g., Rangno 1979u), which makes this story so interesting from a scientific viewpoint.

Thus, the Bureau’s research program continued.

Winter experiments were conducted outside of the Colorado River Basin at: Elk Mountain, Wyoming (University of Wyoming) Bridger Range, Montana (Montana State University) Jemez Mountains, New Mexico (New Mexico State University) Pyramid Lake Pilot Project (University of Nevada) In addition, the Bureau continued to provide supplemental funds to Colorado State University’s NSF research and to Utah State University’s state -sponsored research project. Through the Emergency Drought Act of 1977 the Bureau granted over $2 million to six states for supplemental support of their cloud seeding projects including over $1 million to the States of Colorado and Utah for cloud seeding in the Colorado River Basin. 

1.6 Current Policy Statements from American Meteorological Society and World Meteorological Organization on Efficacy of Winter Orographic Cloud Seeding 

The two leading organizations representing the atmospheric science scientific establishment, the World Meteorological Organization and the American Meteorological Society, have both issued policy statements on the efficacy of winter orographic cloud seeding. These are relevant to review given the NRC 2003 conclusions. 

The current statement from the World Meteorological Organization (WMO 2010) on weather modification in general and relating specifically to winter orographic cloud seeding efficacy is stated below. 

“The scientific status of weather modification, while steadily improving, still reflects limitations in the detailed understanding of cloud microphysics and precipitation formation, as well as inadequacies in accurate precipitation measurement. Governments and scientific institutions are urged to substantially increase their efforts in basic physics and chemistry research related to weather modification and related programmes in weather modification. Further testing and evaluation of physical concepts and seeding strategies are critically important. The acceptance of weather modification can only be improved by increasing the numbers of well executed experiments and building the base of positive scientific results.” 

“Cloud seeding has been used on both cold clouds, in which glaciogenic seeding aims to induce ice-phase precipitation, and warm clouds, where hygroscopic seeding aims to promote coalescence of water droplets. There is statistical evidence, supported by some observations, of precipitation enhancement from glaciogenic seeding of orographic supercooled liquid and mixed-phase clouds and of some clouds associated with frontal systems that contain supercooled liquid water. “ 

The current AMS policy statement (AMS 2010) does not address specifically the efficacy of winter orographic cloud seeding but much like the NRC 2003 report identifies uncertainty and risk with much the same conclusions. These are listed below. 

UNCERTAINTY – Planned weather modification programs benefit from a comprehensive understanding of the physical processes responsible for desired modification effects. Recent improvements in the composition and techniques for dispersion of seeding agents, observational technology, numerical cloud models, and in physical understanding of cloud processes permit evermore detailed design and targeting of planned weather modification effects, and more accurate specification of the range of anticipated responses. While effects are often immediately evident in simple situations, such as when cloud seeding is used to clear supercooled fog and low stratus cloud decks, in more complex cloud systems it is often difficult to determine a seeding effect on a cloud-by-cloud basis. In these more complex situations, large numbers of events must be analyzed to separate the response to cloud seeding from natural variability in cloud behavior. Rigorous attention to evaluation of both operational and research programs is needed to help develop more effective procedures and to improve understanding of the effects of cloud seeding. Research and operational programs should be designed in a way that will allow their physical and statistical evaluation. Any statistical assessment must be accompanied by physical evaluation to confirm that the statistical results can be attributed to the seeding through a well-understood chain of physical events. It should be noted, though, that in practice large potential benefits can warrant relatively small investments to conduct operational cloud seeding despite some uncertainty in the outcome. 

The text in blue font seems like PR, Dave, and should be updated due to the lack of proof of seeding induced increases in snow we now have. Neiburger (1969u, WMO Tech Note) warned that such thinking usually excludes the idea that seeding might result in decreases in precipitation in addition to mistargeting, faulty operations.  

1969 CLOUD SEEDING REVIEWS MORRIS NEIBURGER ocr

RISK MANAGEMENT – Unintended consequences of cloud seeding, such as changes in precipitation or other environmental impacts downwind of a target area, have not been clearly demonstrated, but neither can they be ruled out. In addition, cloud seeding materials may not always be successfully targeted and may cause their intended effects in an area different than the desired target area. This brings us to the ethical concern that activities conducted for the benefit of some may have an undesirable impact on others; weather modification programs should be designed to minimize negative impacts.. At times unintended effects may cross political boundaries, so international cooperation may be needed in some regions. Precipitation augmentation through cloud seeding should be viewed cautiously as a drought-relief measure because opportunities to increase precipitation are reduced during droughts. A program of precipitation augmentation is more effective in cushioning the impact of drought if it is used as part of a water management strategy on a long-term basis, with continuity from year to year, whenever opportunities exist to build soil moisture, to improve cropland, and to increase water in storage. From time to time methods have been proposed for modifying extreme weather phenomena, such as seeding severe thunderstorms with aerosols to diminish tornado intensity, or seeding tropical cyclones to cause changes in their dynamics and steer them away from land and/or diminish their intensity. Some experimentation has taken place in these areas, but current knowledge of these complex weather systems is limited, and the physical basis by which seeding might influence their evolution is not well understood. Weather modification techniques other than cloud seeding have been used in various areas of the world for short periods of time to achieve goals similar to those of cloud seeding. Much less is known about the effects of these other techniques, and their scientific basis is even further from being demonstrated, either statistically or physically, than it is for cloud seeding. Application of weather modification methods that are not supported by statistically positive results combined with a well-understood physical chain of processes leading to these results, and that can also be replicated by numerical cloud modeling, should be discouraged.

Other organizations such as the North American Interstate Weather Modification Council, The Weather Modification Association, the American Society of Civil Engineers, and the Western States Water Council have also adopted policy statements or adopted resolutions relating to the use of weather modification for increasing snowpack and water supply. These are referenced in Ryan (2005) and will not be repeated here. Most if not all of these statements are much more positive in their support of the application of weather modification for enhancing snowpack and runoff despite the lack of evidence as reported in NRC 2003.

To the uninitiated reader to the field of weather modification/cloud seeding, it will seem odd that there are government entities that will pay huge sums of tax payer monies for cloud seeding with no viable evidence that it does anything, evidence being in the form of randomized experiments, the “gold standard” of scientific proof.  

Why would those entities take such chances?  

If you haven’t guessed by now, it’s because those government entities are telling their constituents directly or implicitly that they are doing SOMETHING about a drought.  It’s a great ploy, and usually works except in the minds of those who know the science.  

What science?  

Two modern randomized experiments testing to see if cloud seeding can increase precipitation in mountainous regions (Wyoming and in northern Israel) ended with  no indications that cloud seeding increased precipitation.  These null findings have been published by Rasmussen et al. 2018u for Wyoming, and by Benjamini et al. 2023u for Israel.  Now you know.  

Did the “null” finding reported by Rasmussen et al. 2018 terminate cloud seeding in Wyoming?  Of course  not.  It just looks too good to the public that you’re doing something about water needs.  

1.7 Generalized Concepts of Winter Orographic Cloud Seeding 

It is useful to review the general principles of winter orographic snowfall and whether this process could be modified or enhanced by artificial means. The basic physical concepts associated with seeding winter orographic clouds are not debated even though there is considerable debate over weather modification and its efficacy. These basic physical concepts are reviewed in the following section. There are several text books and encyclopedia articles available for a more in-depth discussion or broader overview of the physical basis of cloud seeding (Hess 1974; Dennis 1980; Dennis 1987; and Heymsfield 1992). 

Dennis in his (1980) Academy Press book, “Weather Modification by Cloud Seeding,” relied heavily on the 1977 BOR Monograph Number 1 (yes, it was deemed that important by the BOR to name it as NUMBER ONE),  became outdated almost immediately when external critics (guess who?) found serious flaws in that “meta-analysis.”     The BOR study, published in 1978u (Vardiman and Moore) was retracted in 1980  by Rottner et al. 1980 as critical “Comments” on their paper by, yep, Rangno and Hobbs (1980) were being published.  Thus, Dennis (1980) might be reconsidered as a reference here.  The BOR was too willing to believe in cloud seeding success mirages that led to this major embarrassment.

Too, much of the cloud seeding literature in Hess (1974) has been overturned in reanalyses or has not been replicated, as in the recent Wyoming and Israel experiments.  But, “hey,” you can read about global cooling in Hess (1974), thought to be underway at that time.

Figure 1.2 from Ludlam (1955), reproduced below, describes the process that remains to this day the fundamental conceptual model associated with winter orographic cloud seeding. Figure 1.2 shows a shallow orographic cloud, where the liquid condensate produced by forced assent over a mountain barrier is unable to be converted to snowfall before the air descends and evaporates in the lee of the mountain. During wintertime the freezing level (height of the 0oC isotherm) varies dependent on the origin of the air mass impinging on the mountain barrier.  This varies from north to south with the freezing level being lower in altitude at the northern latitudes of the western US and the inter-mountain west where the air masses that impact this area are usually modified maritime polar or continental polar.

and height allowing the crystals to grow at the expense of the cloud water that in (a) was lost to the lee, bringing this moisture down on the windward side of the mountain.

1.2a is the non-precipitating cloud that forms the low, demonstrable end of seeding potential.

The text in blue in the body of the paragraph may be true, but….. warm air masses during times of upper level ridges along the West Coast shunt warm air mass storms into the central and northern Rockies, so this “paradigm” often does not hold.  Surface temperatures may be well below freezing, but much higher temperatures usually exist aloft in those warm aloft regions of winter storms.  The Climax I experiment, for example, had numerous warm aloft storms overrunning colder air with west-northwest flow due to this synoptic scenario.   Quantification of this claim would have been very informative and would have pinned it down for the reader…and me!

Freezing levels are usually below ground level in mountainous regions except in the warmest storms. In the Ludlum model, it is assumed the orographic cloud has a significant depth of cloud below 0 oC and thus the cloud moisture is said to be supercooled. The critical uncertainty with regard to successful conversion of the unused cloud condensate to snowfall prior to passing over the crest is the location, duration, temperature and concentration of the supercooled liquid water (SLW).

As Ludlum describes it may take as much as 1500 seconds once artificial ice crystals are initiated to grow and fall out before passing to the lee of the mountain crest.  This can vary by several tens of minutes based on SLW concentration, temperature vertical profile and winds.

The process of crystal growth is almost always much fast than “as much as” 25 minutes to fallout cited by Ludlum  (e.g., Auer et al. 1969, Cooper and Vali 1981).

So the critical factors for achieving success are getting the seeding agent into the cloud at the right location where it will generate enough ice embryos such that they will utilize the available SLW prior to passing over the crest. There are many complex interactions that have made it very difficult to demonstrate the efficacy of winter orographic cloud seeding to the satisfaction of the scientific community. These factors are described in the following paragraphs. 

So true.

 1.7.1 The Initiation, Growth and Fallout of Snow in Winter Orographic Clouds 1.7.1.1 Converting Supercooled Liquid Water (SLW) to Snow

Supercooled liquid water (SLW) in the atmosphere is made up of tiny cloud droplets that are colder than 0 oC. There are two processes in nature by which SLW in the atmosphere can freeze to initiate snowfall: 1. Heterogeneous nucleation or 2. Homogeneous nucleation. Heterogeneous nucleation occurs when the supercooled liquid drop comes in contact with what is called an ice nucleus (IN) that emulates the crystalline structure of ice and causes the droplet to freeze. These can be dust particles, biological particles or a combination of the two. These aerosols can come from as far away as Asia and Africa initiating cloud ice in orographic clouds in the western US (Cremean et al. 2013). They are made of very small particles of tenths of microns in size. They are most active at cloud top and tend to activate the growth of snowflakes from the top of the cloud down. The warmer the cloud top the less percentage of ice makes up the cloud (Cremean et al. 2013).

Sidebar:  An interesting feature, first observed in the 1950s (e.g., Cunningham 1957u) and afterward was the “upside down” storm structure where few ice crystals were found at low cloud top temperatures consisting mostly of supercooled liquid water with increasing ice crystal concentrations below the top. The increasing concentrations of ice crystals were mostly due to the fragmentation of delicate ice crystals. The most recent description of this scenario was by Rauber and Tokay (1991u) and Hobbs and Rangno (1985).

Lower down, within a km of the surface, ground observations have shown that riming and and aggregation occur that increase snowfall rates. This lower region near mountains cannot be sampled by aircraft if precipitation is falling and as a result, has mainly been documented  in ground observations (e.g, Hobbs 1975). Thus, aircraft observations can often be seen as under measuring ice particle concentrations in mountainous regions.  For example, we at the University of Washington often overflew shallow orographic clouds with liquid tops at >-10C with snow falling out underneath, but we couldn’t sample them because the tops were too close to the tops of the Cascade Mountains.

When clouds are dominated by warm rain processes, the aerosol makeup of the cloud is more sea salt and biological particles which act as condensation nuclei producing larger cloud droplets which grow to raindrops via collision coalescence. Homogeneous nucleation occurs when the air temperature drops below -40 oC and the water droplet spontaneously freezes without the aid of a nucleating agent. The most basic hypothesis in winter orographic cloud seeding is that in the presence of SLW droplets, ice crystals will grow at the expense of the drops. This means the drops will convert back to vapor allowing the crystals to grow by vapor deposition unless too many ice crystals have resulted from seeding in which case they might not grow at all. The driver for crystal growth is related to the concentration of SLW and the temperature regime of the SLW (Ryan et al. 1976; Heymsfield 1992; Pruppacher and Klett 1978).

In the presence of moderately high concentrations of SLW and with somewhat preferred growth temperatures (Ryan et al. 1976, Figure 1.3) enough of the initial ice crystals can grow and then begin to aggregate into larger flakes leading to higher fall speeds and earlier fall-out. If these artificial crystals encounter additional SLW as they fall back toward the mountain crest, the individual crystals or aggregates may collect these SLW drops (called riming) which will also increase the crystals fall-speed. If the naturally created ice crystals are unable to utilize all the available SLW, and some SLW evaporates to the lee of the mountain, the cloud is said to be less than 100% efficient. This provides the opportunity for the artificial injection of a nucleating agent to create the additional ice crystals necessary to bring the residual cloud water to the ground before it is lost to the lee of the mountain. This is the basic principles described in Ludlam’s model. 

Aerial Seeding window 

Ground based seeding temperatures 

General seeding window based on Figure 1.5 and observed SLW 

As Super and Heimbach (2005) noted, the frequency of occurrence of SLW is temperature dependent with higher frequencies and amounts at (higher) supercooled temperatures. This is true for all mountain ranges where SLW has been observed. There are two main reasons for this. First, the amount of water vapor in the atmosphere can be higher at warmer (higher) temperatures. Second, as the atmosphere cools and clouds form and reach temperatures lower than -10 oC, and especially at -20 oC, an abundance of natural ice can occur that depletes the supercooled cloud water. Thus, there is less SLW available for cloud seeding to enhance the natural precipitation process as the air approaches these temperatures. It should be noted that studies (Reinking et al. 2000; Super 2005) have found significantly higher amounts of SLW (.5 to 1 mm integrated SLW) in wave clouds during winter storms and noted that others had observed such amounts during brief periods in other western mountain locations. However, the overwhelming amount of observations utilizing microwave radiometers (Heggli and Rauber 1988; Huggins 2009; Super and Heimbach 2005), in-situ aircraft observations, and mountain top icing rate meters indicate that SLW is concentrated in the lowest 1000m along the windward slopes of mountain ranges during passing winter storms. The primary SLW zone rapidly dissipates downwind of the crest because of warming produced by subsidence and by depletion from conversion to snowfall (Boe and Super 1986; Rauber et al. 1986; Rangno 1986 (the rapid dissipation of SLW, one of my main points), Huggins 1995; Super 2005; Huggins 2009).  There are observations that confirm the simple conceptual model espoused by Ludlam when natural ice does not form. The location of many of the research studies referenced in this report along with other locations that will be referenced later in this report are shown in Figure 1.4b. One can compare these locations to Figure 1.4a which shows the location where operational winter orographic cloud seeding is conducted circa 2006 per Griffith et al. 2006. Coastally influenced areas would be west of the Sierra Nevada and Cascades while the intermountain region refers to areas east of these two ranges. 

The actual temperature relationship to SLW occurrence varies geographically. For the intermountain west, where the cloud drop size distributions are more numerous at the smaller drop sizes (10 to 15 microns; what is referred to as a continental drop size distribution), lower temperatures are reached before a sufficient number of natural ice crystals develop to utilize the available SLW. Thus, SLW can exist, at least briefly, at temperatures as low as -15 to -20 oC. Super and Heimbach (2005) provide a comprehensive review of SLW climatology in the intermountain west. 

In more coastal regions, such as the Sierra Nevada and Cascades, the drop size distribution can be broad (what is referred to as a maritime drop size distribution). The drops can begin to collide and coalesce because of the varying fall speeds of the drops with a broader distribution of cloud droplets (extending into and above 30 microns diameter). This leads to larger cloud drops (approaching drizzle size) that can be carried upslope into coastal mountains like the Cascades and Sierra Nevada ranges where just a few of these droplets can freeze leading to rime splintering or secondary ice-crystal production (Hallett and Mossop 1974; Dong and Hallett 1989; Mossop 1985). This can, and has been observed to lead to high concentrations of ice crystals with cloud temperatures warmer than -10 oC (Reinking 1978; Cooper 1986; Marwitz 1986; Hobbs and Rangno 1985; Rauber 1992).

Nieman et al 2005u reported  occurrences of the “warm rain” process in Northern California and Oregon were common.  Will cloud seeding increase precipitation if nature is providing rain via collisions with coalescence?

Other factors (Rango  (sic) 1986) can lead to high ice crystal concentrations with relatively high cloud top temperatures. Mixing of very dry air into cloud tops can initiate cloud droplet freezing (e.g., Koenig 1968; Hobbs and Rangno 1985). This has been observed in the Cascades, Sierra Nevada and southern Utah. In the post-frontal airmass, where most of the shallow orographic clouds exist, very dry air can exist above cloud top. This is caused by sinking air parcels in the region behind the upper-level jet-stream that usually passes just ahead of the surface cold front  (Heggli and Reynolds 1985). Thus the coastal mountain clouds will have a lesser degree of supercooling, meaning that the clouds will be only marginally supercooled as natural ice production will utilize the available SLW within moderately supercooled clouds. Reynolds (1995) documented that over an 8 year period in the northern Sierra Nevada, 80% of the hours reporting SLW from mountain-top icing rate meters were at temperatures warmer than -4 oC. Reynolds (1996) also reported that 70% of the hours with precipitation had icing (riming?) reported. Approximately 300 hours of icing were reported per season. However, some seasons had average temperatures during icing warmer than -2 oC which may be too warm for any known seeding agent to work effectively unless seeded aloft using aerial seeding. Studies examining mountain top temperatures in Colorado and Utah revealed that SLW in clouds is mildly supercooled in a large portion of all storm passages, which means clouds are too warm for effective AgI seeding (Super 2005). Refer to Figure 1.5 for activation levels of the various cloud seeding agents currently used or proposed.

Why aren’t supercooled non-precipitating clouds’ occurrences documented for whole seasons as in Ludlams’s simple case? Seems this information would form a great starting point that could determine how much seeding can unequivocally increase snow.  The reader would like to know.

There are many studies (Heggli et al. 1983; Boe and Super 1986; Rauber and Grant 1986; Heggli and Rauber 1988; Super and Huggins 1993; Super 2005; Huggins 2009) that state SLW within a cloud varies rather rapidly with time over any given point. Due to this variability in SLW, identifying seeding potential within winter orographic storms will require identification of the proper seeding agent and delivery technique and applied at the correct time and location (Hunter 2007; Huggins 2009). Huggins (2009) suggests that any cloud seeding program will necessarily be treating clouds that at any given time may not have sufficient SLW (when the seeding agent arrives) given its variability. This begs the question as to whether seeding in these situations may have negative impacts on snowfall production. This will be further discussed in Section 1.7.4. Even though the location of SLW concentrations is known, the exact lower threshold for SLW concentrations to be sufficient for enhancing snowfall has not been quantified. It is believed to be greater than .05 mm integrated in the vertical derived from microwave radiometers (threshold used by Super and Heimbach 2005 and Manton et al 2011). However, Murakami (2013) used .2 mm as the lower threshold for determining cloud seeding feasibility and theorized that .3mm was probably the minimum threshold for viable increases in orographic precipitation enhancement.

For what durations of this SLW threshold? Did those these researchers report how long it lasted?  Did they make any seasonal estimates of these occurrences?  The reader would want to know.

This is a critical question as frequency distributions of SLW concentrations from radiometer data (Reynolds 1988) indicate that 85% of the SLW reported were at concentrations below .2 mm (Figure 1.5).What constitutes a necessary and sufficient concentration of SLW for effective cloud seeding is still in debate. 

Several studies (Rosenfeld 2000; Givati and Rosenfeld 2004; Rosenfeld and Givati, 2006; Griffith et al. 2005; Hunter 2007) have described decreases in orographic precipitation due to pollution.

The above requires some exhaustive comments:

Reynolds was unaware that when the claims of Givati and Rosenfeld concerning air pollution were examined by external skeptics they have not been substantiated.   I think this same view should be taken with Givati and Rosenfeld (2006) for pollution effects on West Coast precipitation.  We need this latter study to be validated by an external skeptic!  Yes, I am excited here.

I suspect, as in the Givati and Rosenfeld’s (2005) Israel study, where more than 500 standard gauges and 82 or so recording gauges were available to cherry-pick whatever result one wants, this may well have been  done in the 2006 study.   Kessler et al. (2006u), in an evaluation of the Israeli operational seeding program wrote: “No supporting evidence was found for the thesis of Givati and Rosenfeld (2005) regarding the decline in the Orographic (sic) precipitations due to the increase of air pollution.”

The air pollution claims, while superficially credible except for their sudden hypothesized appearance in Israel after 1990 when operational seeding produced a slight indication of decreased rainfall (Kessler et al. 2006u), were also evaluated by several independent groups and scientists: Alpert et al. (2008u, 2009u); Halfon et al. (2009u); Levin 2009u.   The Givati and Rosenfeld (2005) claims were also addressed in a review by Ayers and Levin (2009u). All these independent re-analyses and reviews of the hypothesized effect of air pollution on rainfall found the argument that air pollution had canceled seeding-induced increases in rain in Israel unconvincing.   In the few cases that Dr. Rosenfeld’s papers have been reviewed by external skeptics, they don’t hold up.  Ask Prof. Levin, Tel Aviv University, Professor Sandra Yuter, North Carolina State University, Nathan Halfon, Tel Aviv University, or me.   Hence, Caveat Emptor!

This specifically impacts the collision coalescence process and what is called warm rain, i.e. no ice processes involved. These studies discuss that pollution can slow down the collision coalescence process by narrowing the drop-size distribution. This, in turn, slows down the warm rain process and would have the largest impacts in the low-elevation coastal ranges along the west coast where the freezing level is well above the elevations of the coastal mountains, i.e. around Los Angeles where it has been proposed to reduce precipitation. Typically the decrease in orographically enhanced precipitation is greatest downwind of a major metropolitan area that is producing pollution. Givati and Rosenfeld (2004) showed precipitation losses near orographic features downwind of coastal urban centers corresponding to 15-25% of the annual precipitation.

Caveat emptor re Givati and Rosenfeld’s findings!

This loss of precipitation can be greater than the gain claimed by precipitation enhancement techniques in portions of California (Hunter 2007). Hindman et al (2006) noted that the trend over the past 20 years, from cloud droplet measurements at Storm Peak in the northern Rockies, has shown a decrease in CCN and an increase in cloud drop size. The conclusion was a decrease in upwind CCN concentrations (less pollution) but no relationship was found with precipitation rate. Thus, the change in cloud droplet spectra was not impacting riming growth efficiency (Borys et al 2003). It was noted by Creamean (2013) that pollutants, such as from human activity, were found mostly in the boundary layer and with frequently higher concentrations preceding surface cold fronts. The pollutants become trapped in the stable air as the air warms aloft and surface flows tend to be from the southeast to east tapping polluted sources from the central valley of CA. Once the front passed, the air-mass off the ocean did not contain these pollutants. It is the post–frontal cloud systems that have been identified as the most seedable in the northern and central Sierra (Heggli and Reynolds, 1985). It is not anticipated that pollutants play a significant role in these post-frontal shallow orographic clouds.

It should be noted that a more recent survey article by Tanre’ et al (2009), reviewed the impact of aerosols on precipitation and concluded: “Even though we clearly see in measurements and in simulations the strong effect that aerosol particles have in cloud microphysics and development, we are not sure what is the magnitude or direction of the aerosol impact on precipitation and how it varies with meteorological conditions. Even the most informative measurements so far on the effect of aerosols on precipitation do not include simultaneous quantitative measurements of aerosols, cloud properties, precipitation and the full set of meteorological parameters.”

Thanks to Tanre’ et al. (2009)!

The current CALWATER II experiment running this winter in California is an attempt to provide such information.

(Did it?)

The main limitation is very similar to the problems inherent in quantifying the impacts of artificial seeding of winter orographic clouds. That is the observing systems that we apply to quantifying the impacts have large measurement uncertainties and are of a magnitude similar to the expected aerosol influence on precipitation. Tanre’ notes that satellite and radar measurements have 20-30% errors in the measurement of aerosol optical depth, while aircraft sampling in-cloud can introduce changes in the cloud that can compromise the utility of the aircraft observations. In-deed measurements of surface precipitation, especially snowfall water equivalent can have 10-15% measurement uncertainty given gauge location and thus exposure to wind, minimum threshold/resolution, and such problems as capping. These types of measurement uncertainties require longer term on-going statistical analyses to reduce the random noise in the observations much like is required for cloud seeding experiments, thus reducing the influence of measurement uncertainty so as to extract the small signal that might exist. 

1.7.1.3 Artificial Stimulation of Snowfall by Seeding Agents

Artificial stimulation of snowfall is conducted through the application of aerosols that mimic natural ice nuclei to enhance the heterogeneous freezing of available SLW or by chilling the air below -40 oC to initiate homogenous nucleation. It is well known that the effectiveness of the heterogeneous seeding agent is highly temperature dependent. Artificial cloud nucleating substances (AgI, CO2, Liquid propane, SNOWMAX) are dependent on the presence of SLW at temperatures slightly below 0 oC for CO2, propane, and SNOWMAX (Ward and Demott 1989) or below -5 C to -8 oC for AgI mixtures (Figure 1.6). 

Figure 1.6 – Seeding activation versus temperature for seeding agents that have been used or proposed

These seeding agents act in different ways. Solid or liquid CO2 and liquid propane work by homogenous nucleation. These seeding agents need to be directly released in the presence of SLW for them to be effective. AgI and SNOWMAX work by heterogeneous nucleation, meaning they mimic the structure of natural ice nuclei. They do not have to be released directly into cloud or SLW. The aerosol can be carried aloft into clouds and when it encounters SLW at the right temperatures will begin generating ice crystals by contact nucleation. As shown in Figure 1.6, SNOWMAX works at the warmer (higher) end of the SLW temperature spectrum and its effectiveness does not vary greatly with temperature. To the author’s knowledge, SNOWMAX is not used in any operational seeding program but is used almost exclusively for snowmaking at ski resorts. The effectiveness of AgI to nucleate ice crystals increases by orders of magnitude from -5 oC to -12 oC (Super 2005). It should be noted that under transient water supersaturations, AgI can activate more rapidly and at temperatures near -5 oC through the condensation freezing mechanism (Pitter and Finnegan 1987). Chai (1993) explained the only way AgI could have been an effective seeding agent in the Lake Almanor seeding experiment (Moony and Lunn 1969) was through the fast activating condensation freezing process.

Mooney and Lunn (1969)… The westerly case where it was reported there had been large increases in snow reported due to seeding, was not reported for Phase II of the Lake Almanor experiment (Bartlett et al. 1975u). This omission should be unsettling to any objective scientist.

If the AgI is burned below cloud base or at temperatures warmer than -5 o C, the aerosol will not produce sufficient ice embryos until temperatures colder than -8 oC are reached (Super and Heimbach 2005). Huggins (2009) found the best temperatures for SLW in the Bridger Range Experiment occurred at < -9 oC using AgI, which suggests the AgI acted through contact or deposition nucleation. The central reason to explore propane seeding is its characteristic to be effective in mildly supercooled clouds that would be too warm for AgI. Propane dispensers tend to be more reliable, less complicated and less expensive than AgI generators. SLW temperatures in CO frequently range from -4 to -13 oC depending upon location and elevation (Boe and Super 1986; Rauber and Grant 1986; Huggins 1995; Super 2005; Huggins 2009). Due to the mildly supercooled nature of some CO locations, propane could be a useful alternative to AgI generators (Boe and Super 1986; Hindman 1986). The cloud base in California is often warmer than 0 oC while the top of the SLW near the mountain crest is usually > -12 oC (Heggli et al. 1983; Heggli and Rauber 1988; Huggins 2009). This is why propane was adopted by Reynolds (1995) as the seeding agent of choice in the Lake Oroville Runoff Enhancement Program (LOREP) in northern California (see Figure 1.4b). 

Cloud base altitude is an important consideration when siting propane dispensers which must be in-cloud or just below cloud base (at ice saturation) to be effective (Super 2005). Super and Heimbach (2005) indicate that even in the intermountain region, a significant number of hours with SLW are at temperatures where the release of AgI at elevations below -5 oC and out of cloud would not reach elevations cold enough to activate a sufficient quantity of the AgI to effectively “seed” the cloud and produce meaningful increases in snowfall. Thus, the 300 to 600 hours of reported SLW over the intermountain region during the 5 month snowfall season would require a mixture of seeding delivery methods including a mixture of high elevation ground released AgI and liquid propane or seeding from multiple aircraft. 

All weather helicopters with ceilings above 20,000 feet ASL  might be useful for targeting small watersheds when shallower clouds are present.

1.7.2 Transport and Dispersion of Seeding Material

1.7.2.1 Ground Releases 

Flow over complex terrain is not a simple and straightforward problem therefore making targeting a challenge. Trying to disperse AgI from ground based generators has proven to be very difficult (Super and Heimbach 2005). There are two critical issues here. One is whether a parcel of air starting out near the foothills or a valley location will be carried over the mountain in the prevailing wind direction or whether it will flow around the mountain. This is determined by the static stability of the air mass and the strength of the flow perpendicular to the mountain, often noted by the Froude number. When the velocity of the flow is strong enough to overcome the air parcels static stability, a Froude number greater than 1 is produced, meaning the parcel of air will pass over the mountain and not flow around the mountain. The depth of the boundary layer is also very important as ground based cloud seeding efforts are located within this layer. If AgI is released below cloud or at temperatures warmer than -5 oC, the aerosol will have to be carried up into the cloud to a level where the temperature is colder than -8 oC. If the boundary layer is shallow and does not allow the aerosol to reach the appropriate temperature level or that level is reached very near the crest of the mountain, there will be no impact on the windward slopes of the mountain. The depth of the boundary layer is a function of low level wind shear (Xue 2014), which is the change in direction or velocity of wind with height. The stronger the wind shear, the greater the depth of the boundary layer. Strong low level flow perpendicular to the mountain, along with strong wind shear and at times weak embedded convection, will provide the mechanism for lifting the aerosol up the mountain. This allows dispersal of the aerosol to seed more cloud volume. If the temperatures are cold enough and SLW is continuous, an increase in snowfall will occur on the windward slopes and increase the precipitation efficiency of the orographic cloud. The targeting issue has been described by many weather modification researchers (Super and Heimbach 2005; Reynolds 1988; Warburton et al. 1995a and b) as the single most critical issue that has compromised the success of both operational as well as research field projects. Again, reason to emphasize that effective cloud seeding is an engineering problem. 

It has been shown that ample seeded crystals with sufficient concentration need to be dispersed so that a substantial volume of cloud over the target is treated for more than trace snowfall rates to occur (Super 2005; Huggins 2009). The seeding material must be injected into the SLW in sufficient quantities to generate 50 to 100/L or more initial ice embryos. This will then utilize the available SLW and fall out of the cloud prior to the snowflakes passing over the summit of the mountain and sublimating in the lee of the mountain. An example of the use of a rather simple targeting model (GUIDE, Rauber et al , 1988) used in the Lake Oroville Runoff Enhancement Project (LOREP ) to target ground-based liquid propane seeding effects is shown in Figure 1.7. This project used the tracer SF6 co-released with the propane from two sites to validate the GUIDE and assure accurate targeting. The GUIDE plumes as shown both horizontally and vertically along with the vertical motion field from a locally released rawinsonde. 1.7.2.2 Seeding from Valley Locations Many operational cloud seeding projects have placed AgI generators in valley locations as they are easily accessible and can be manually ignited when needed. However, a considerable body of evidence indicates valley released AgI plumes are often trapped by stable air (high static stability), especially when valley-based inversions are present (Langer et al. 1967; Rhea 1969-cited but does not appear in Reynolds references; Super 2005). Often times in past projects AgI plumes from valley located generators were not tracked sufficiently to determine exactly where the aerosol plumes drifted (Smith and Heffernan 1967; Super 2005). As noted earlier, this is a recurring issue that has been raised in many winter orographic cloud seeding articles ( Elliott et al. 1978u, Rangno 1979u; Reynolds 1988; Super 2005; Hunter 2007; Huggins 2009). The aerosols may pool in the valley or may move in a direction around the mountain, only to be carried aloft when the static stability of the airmass decreases and low level winds increase. This usually occurs near and behind the surface cold fronts associated with winter storms. Thus, the AgI aerosol may travel far distances from the target but is unlikely to have appreciable effects far from a target due to the low concentrations that eventuate after many hours or days of travel. 

1.7.2.4 Seeding from Airplanes or Helicopters

Seeding by aircraft can be an alternative mechanism in locations where there is insufficient time to activate the seeding agent and grow the crystals to sufficient size for fallout to occur on the windward slopes of the barrier. These situations mainly occur within coastal mountains where the SLW near the crest of the mountain is only slightly sub-cooled. Typically the clouds extend up to a kilometer above and well upwind of the crest such that cloud top temperatures are -6 oC to -8 oC or lower. In these situations, the aircraft or helicopter can fly (hover above) in the tops of the clouds and either drop crushed dry ice, AgI droppable flares, or ignite AgI wing-tip generators or stationary flares that will directly inject the seeding material into the cloud. The dispersion would be especially enhanced in the downwash below a helicopter. Using crushed dry ice or droppable flares will create a curtain of ice crystals some 1000 m below the aircraft. This will spread at a rate of 1-2 m/s dependent upon the amount of vertical wind shear (Borovikov et al. 1961u, Hill 1980; Reynolds 1988). For these seeding curtains to merge together over the intended target area, the length of the seed line cannot be more than 30 to 40 km long (Deshler et al. 1990). However, the watershed of a large river basin can be several hundred kilometers wide. One aircraft will treat only a small portion of the watershed (see Figure 1.8). In addition, the duration of the seeding aircraft is usually about 2 to 4 hours, with the possibility of the aircraft having to descend to deice several times during the seeding mission. Aircraft operations are also expensive. For these reasons, many operational seeding programs use ground based seeding platforms, even if they are only viable a small percentage of the time. 

1.7.4 Extended Area Effects fromWinter Orographic Cloud Seeding (ones that have not been sufficiently investigated for lucky draws/synoptic biases)

The reason why I added this to the title is that I deem this part of the survey the weakest part.  No one talks about how low the concentrations of AgI would be in far away, so-called downwind affected regions, and god save anyone who looks at synoptics for a bias! Meltesen et al.(1978) did look at synoptic bias for the claimed downwind seeding increases from Climax and look what they found;  a synoptic bias that produced the illusion of downwind increases in snow!

Hunter (2009) prepared an extensive literature review of the current state of knowledge on extra or extended area effects from winter orographic cloud seeding. The main impetus for this report was to present any documented evidence that determined that seeding on one mountain barrier resulted in a possible reduction of the amount of precipitation downwind. This has been coined “Robbing Peter to pay Paul”. Hunter provided the following table which is reproduced here (not all references are included in Section 6). In every case, the seeding agent was silver iodide. These results indicate that once the AgI nuclei are released into the atmosphere, they can remain active for many hours, if not several days. If pooled in high concentrations, the AgI nuclei can seed areas well away from the intended target areas. However, the impacts of these extra-area effects are just as uncertain as the increase documented in the primary target areas. That is, without strong physical observations to compare with rigorous statistical analyses, there is still a significant level of uncertainty as to the efficacy of seeding with AgI to increase precipitation within large areas outside the intended target area. 

Table 1.2 here

The little bit of seeding (hour long pulses) or in six h blocks during the last season of the Park Range Project, made this claim ludicrous.  By 1979 it was recognized that a Type I statistical error (Mielke 1979u) affected both Climax experiments.  One of the interesting facets of Climax I that  prevented the seeding researchers from recognizing a Type I error was attributing heavier snow on seeded days upwind of Climax to seeding at Climax (Kahan et al. 1969u) 

1.7.5 Statistical Analyses

Statistical analyses have been a key part of assessing past cloud seeding experiments. Credence has usually only been given to those experiments that have been randomized and run as a confirmatory experiment. Key historical projects such as Climax and the series of Israeli cloud seeding experiments run as confirmatory, and meeting or exceeding the level of statistical significance set out in the experimental design, have come under further scrutiny and found to suffer from what is called Type 1 errors (Mielke 1979u; Rhea 1983; Rangno and Hobbs 1987u, 1993; Rangno and Hobbs 1995a,u,  b; Rosenfeld 1997, Rangno and Hobbs 1997a,u, b u).

Rosenfeld’s (1997) “Comments” cited by Reynolds were replied to by Rangno and Hobbs (1997a,u) in short form, and “Comprehensively” at the Cloud and Aerosol Research Group’s website. This dual approach was favored by Professor Peter V. Hobbs.

http://carg.atmos.washington.edu/sys/research/archive/1997_comments_seeding.pdf

Its surprising that Dr. Reynolds did not know of our responses to Dr. Rosenfeld’s many specious comments

============================

Some background on the Israeli work I did: these many exchanges led the Israel National Water Authority to form an independent panel to evaluate its operational seeding program targeting Lake Kinneret (aka, Sea of Galilee), Israel’s primary water source (Y. Goldreich, 2018, personal communication). The expert panel  that was constituted could find no evidence of increased rain the in the catchment of Lake Kinneret between 1975 and 2002  (Kessler et al. 2006).  The independent panel’s findings reversed the optimistic findings of Nirel and Rosenfeld (1995) of a statistically significant 6% increases in rain through 1990. The panel could also not replicate the 6% increase reported by Nirel and Rosenfeld using the same control stations.  Here is what Kessler et al. (2006) reported in graphical form. 

Why is this Israeli discussion important in Reynolds’ review?

The preliminary findings shown in this figure caused Rosenfield to immediately look for an “out,” and with more than 500 standard gauges and 82 recording gauges in Israel (!)  he found it by cherry-picking and claiming what Reynolds suggests in his review: air pollution was decreasing rain as much as cloud seeding was increasing it.  Givati and Rosenfeld’s conclusions did not stand up to independent investigators as was documented earlier, nor by the subsequent investigations for California cited by Reynolds.

This is typical in scientific statistical testing. It is considered less incorrect to not detect a relationship when one exists rather than detect a relationship when one does not exist. Other statistical methods, such as the use of covariates, can be useful in determining the statistical success of seeding operations (Dennis 1980; Mielke et al. 1981; Gabriel 1999; Gabriel 2002; Huggins 2009). A problem common to the statistical method of historical regression is the assumption that climate has been stable over many decades (Hunter 2007) which is called stationarity, and not declaring covariates in advance of experimentation.

1.8 Summary 

From the information summarized above it is worth reviewing the key questions as outlined for winter orographic clouds as listed in Table 1.1. 

What is the location, duration, and degree of supercooling of cloud liquid water in winter orographic clouds? 

•Concentrated in the lowest km on the windward slopes of mountain (Super andHeimbach, 2005)

•Highly variable in space and time given fluctuations in wind speed/direction and naturalprecipitation processes.

•Higher concentrations and higher frequency of SLW at warmer (sic) (higher) temperatures for all mountain ranges•SLW >.05 mm vertical integrated has been used as lower threshold for cloudseeding initiation.

Are their man-made pollutants or natural aerosols/particulates impacting the target clouds that could modify the cloud droplet spectra/IN concentrations to impede seeding effectiveness? 

•Pollutants acting as CCN can narrow the droplet spectrum and slow down the collision coalescenceprocess (warm rain) reducing rainfall downwind of major pollution sources.(Rosenfeld 2000; Givati and Rosenfeld 2004; Givati and Rosenfeld 2005.  See earlier discussion of the latter report.)

•It was found in SCPP that SIP (secondary ice production) produced high ice concentrations at relatively high cloud top temperatures (-5 to -10 oC)

•If pollutants narrow the droplet spectrum, then pollutants in theory should reduce SIP.

Mossop (1978u) found that increases in small (<14 um diameter) droplets combined with those >23 um diameter increased the efficiency of the riming-splintering process.  So it is possible, with the presence of larger droplets say, due to seaborne or other large aerosols combined with pollution sources, that the Hallett-Mossop riming-splintering process is enhanced.

•If high concentrations of pollution produce high concentration of cloud droplets in a narrow size range, this could reduce riming and reduce snowfall on the windward slopes of narrow mountain ranges where growth times are critical.

•A more recent survey article on the role of pollution on clouds and precipitation (Tanre’, 2009) concluded it was still uncertain as to the magnitude of the impact of pollution or whether pollution increases or decreases precipitation based on the meteorological setting.

•Dust (Saharan and Gobi desert) and aerosols (bacteria) acting as IN can enhance natural s

Are their significant enough differences in maritime influenced winter orographic clouds versus continental orographic clouds that strongly influence the natural precipitation process? 

•Yes. Maritime clouds with broader drop size distributions are subject to SIP and thus clouds are more efficient at higher temperatures.

•Continental clouds have relatively more SLW at lower temperatures given the lack of SIP.

•Evidence of this is well-documented when one compares SCPP and Washington studies with interior mountain studies.

====================End of Comments and Corrections  by ALR==========================

References that were uncited in the Reynolds review but were mentioned in this “review and enhancement.”

Alpert, P., N. Halfon, and Z. Levin, 2008: Does air pollution really suppress precipitation in Israel?  J. Appl. Meteor. Climatology, 47, 943-948.

Alpert, P., N. Halfon, and Z. Levin, 2009:  Reply to Givati and Rosenfeld.  J. Appl. Meteor. Climatology, 48, 1751-1754.

Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystals and ice nuclei observations in stable cap clouds.  J. Atmos. Sci., 26, 1342-1343.

Ayers, G., and Levin, 2009:  Air pollution and precipitation.  In Clouds in the Perturbed Climate System.  Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation. J. Heintzenberg and R. J. Charlson, Eds.  MIT Press, 369-399.

Bartlett, J. P.,  M. L. Mooney, and W. L. Scott, 1975:  Lake Almanor cloud seeding program.  Preprint, San Francisco Conference on weather modification, Amer. Meteor. Soc., 106-111.

Benjamini, Y, A. Givati, P. Khain, Y. Levi, D. Rosenfeld, U. Shamir, A. Siegel, A. Zipori, B. Ziv, and D. M. Steinberg, 2023:  The Israel 4 Cloud Seeding Experiment: Primary Results.   J. Appl. Meteor. Climate, 62, 317-327.  https://doi.org/10.1175/JAMC-D-22-0077.1

Borovikov, A. M., I. I. Gaivoronsky, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Kh. Khrgian and S. M. Shmeter, 1961:  Cloud Physics. Gidrometeor. Izdatel. Leningrad. (Available from Office of Tech. Serv., U. S. Dept. of Commerce.)

Cooper, W. A., and G. Vali, 1981:  The origin of ice in mountain cap clouds.  J. Atmos. Sci., 38, 1244-1259.

Cunningham, R. M., 1957:  A discussion of generating cell observations with respect to the existence of freezing or sublimation nuclei.  In Artificial Stimulation of Rain, H. Weickmann, Ed.  Pergamon Press, NY.,  267-270.

Elliott, R. D., R. W. Shaffer, A. Court, and J. F. Hannaford, 1978:  Randomized cloud seeding in the San Juan Mountains, Colorado.  J. Appl. Meteor., 17, 1298–1318.

Foster, K. R., and P. W. Huber, 1997: Judging  Science–Scientific Knowledge and the Federal Courts.  The MIT Press, Cambridge, MA, 333pp.

Grant, L. O., and P. W. Mielke, Jr., 1967: A randomized cloud seeding experiment at Climax, Colorado 1960-1965.  Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5, University of California Press, 115-131.

Grant, L. O., Chappell, C. F., Crow, L. W., Mielke, P. W., Jr., Rasmussen, J. L., Shobe, W. E., Stockwell, H., and R. A. Wykstra, 1969:  An operational adaptation program of weather modification for the Colorado River basin.  Interim report to the Bureau of Reclamation, Department of Atmospheric Sciences, Colorado State University, Fort Collins, 98pp.

Halfon, N., Z. Levin, P. Alpert, 2009:  Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects.  Environ, Res. Lett., 4, 12pp. doi:10.1088/1748-9326/4/2/025001

Hobbs, P. V., and A. L. Rangno, 1979: Comments on the Climax randomized cloud seeding experiments.   J. Appl. Meteor., 18, 1233-1237.

Kahan, K. M., J. R. Stinson, and R. L. Eddy, 1969:  Progress in precipitation modification.  Bull. Amer. Meteor. Soc., 50, 206–214.

Kessler, A., A. Cohen, D. Sharon, 2003:  Analysis of the cloud seeding in Northern Israel.  Interim report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure.

Kessler, A., A. Cohen, D. Sharon, 2006:  Analysis of the cloud seeding in Northern Israel. Final report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure, In Hebrew with an English abstract. 117pp.

Levin, Z., 2009:  On the state of cloud seeding for rain enhancement.  Report to the Cyprus Institute on Energy, Environment and Water, 18pp.

Mielke, P. W., Jr., 1979:  Comment on field experimentation in weather modification.  J. Amer. Statist. Assoc., 74, 87–88,https://doi.org/10.2307/2286729.

Mielke, P. W., Jr., L. O. Grant, and C. F. Chappell, 1970: Elevation and spatial variation effects of wintertime orographic cloud seeding. J. Appl. Meteor., 9, 476–488; Corrigendum, 10, 842; Corrigendum, 15, 801.

Mielke, P. W., Jr., Grant, L. O., and C. F. Chappell, 1971:  An independent replication of the Climax wintertime orographic cloud seeding experiment.  J. Appl. Meteor., 10, 1198-1212.

Morel-Seytoux, H. J., and F. Saheli, 1973: Test of runoff increase due to precipitation management for the Colorado River Basin Pilot Project.  J. Appl. Meteor., 12, 322-337.

Mossop, S. C., 1978: The influence of the drop size distribution on the production of secondary ice particles during graupel growth. Quart J. Roy. Meteor. Soc., 104, 323-330.

Neiburger, M., 1969: Artificial Modification of Precipitation. W. M. O. Technical Note 105, 33pp.

Neiman, P. J., G. A. Wick, F. M. Ralph, B. E.  Martner, A. B. White, and D. E. Kingsmill, 2005:  Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET:  Geographic, interannual and synoptic variability.  Mon. Wea. Rev., 133, 1199-1223.

Rangno, A. L., 1979:  A reanalysis of the Wolf Creek Pass cloud seeding experiment.   J. Appl. Meteor., 18, 579–605.

Rangno, A. L. and P. V. Hobbs, 1980: Comments on “Randomized cloud seeding in the San Juan Mountains, Colorado,” J. Applied Meteorology, 19, 346-350. 

Rangno, A. L., and P. V. Hobbs, 1987: A re-evaluation of the Climax cloud seeding experiments using NOAA published data.  J. Climate Appl. Meteor., 26,  757-762.

Rangno, A. L., and P. V. Hobbs, 1995a: Reply to Gabriel and Mielke.  J. Appl. Meteor., 34, 1233-1238.

Rangno, A. L. and P. V. Hobbs, 1997a: Reply to Rosenfeld.  J. Appl. Meteor., 36, 272-276.

https://doi.org/10.1175/1520-0450(1997)036%3C0272:R%3E2.0.CO;2

Rangno, A. L. and P. V. Hobbs, 1997b: Comprehensive Reply to Rosenfeld, Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25pp.  http://carg.atmos.washington.edu/sys/research/archive/1997_comments_seeding.pdf

Rasmussen, R. M., S. A. Tessendorf, L. Xue, C. Weeks, K. Ikeda, S. Landolt, D. Breed, T. Deshler, and B. Lawrence, 2018: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteoro. Climatol., 57, 2639–2660, https://doi.org/10.1175/JAMC- D-17-0335.1.

Rauber, R. M., and A. Tokay, 1991:  An explanation for the existence of supercooled water at the top of cold clouds. J. Appl. Meteor., 48, 1005-1023.

Rhea, J. O., L. G. Davis, and P. T. Willis, 1969:  The Park Range Project.  Final Report to the Bureau of Reclamation, EG&G, Inc., Steamboat Springs, CO. 285 pp.

Rottner, D., L. Vardiman, and J. A. Moore, 1980: Reanalysis of “Generalized Criteria for Seeding Winter Orographic Clouds”, J. Appl. Meteor., 19, 622-626.

Vardiman, L, and J. A. Moore, 1978: Generalized criteria for seeding winter orographic clouds. J. Appl. Meteor., 17, 1769-1777.

A Review and Enhancement of Chapter 8 in the book, “Aerosol Pollution Impacts on Precipitation:  A Scientific Review” 

PROLOGUE

Below is the impressive list of “Scientific Reviewers” of this volume before this belated review by yours truly happened, ones listed in the 2009 Springer book,  “Aerosol Pollution Impacts on Precipitation:  A Scientific Review.”  The authors of this book, including Chapter 8, had to review an enormous amount of literature which the reviewers also had to know in great detail.

From a reading of this book in those areas of my expertise, such a task is too much despite the authors’ valiant efforts to “get it right.”  Chapter 8  is an example of the problem of having too much to review and not enough time to scrutinize the details of so much literature in one topic.  Chapter 8 is well-written, most of the necessary citations are in it that help the reader to understand the topic.    It does an outstanding job of making a case about the, “Parallels and Contrasts” in deliberate seeding and aerosol pollution.  That is,  except for those elements in Chapter 8 that I am perhaps, a little too familiar with and feel must be addressed in this VERY belated review.

“Too familiar?”

That’s what happens to someone who has spent thousands of volunteer hours (crackpot alert!) rectifying faulty cloud seeding and cloud claims in peer-reviewed journal articles because he felt, “Someone has to do something about this!” (Second crackpot alert, possibly with megalomaniacal implications.)

It goes without saying that I was not asked to review Chapter 8 before it was published.  This would have made these comments unnecessary.  I was well known by the authors of this review as an expert on clouds, cloud seeding, and the weather in the two regions where landmark experiments are reviewed in Chapter 8; those in Colorado and Israel .   With Professor Peter V.  Hobbs in tow, I dissected those landmark experiments in Colorado and Israel and showed they were, as Foster and Huber (1997) described faulty science,  “scientific mirages.”  In fact, they were “low-hanging fruit” that poor peer reviews of manuscripts had let in the journals.  It didn’t take a genius to unravel them.

I read this chapter only recently after I was given the book by one of its authors.  I wondered if Chapter 8 had been reviewed at all by any of the illustrious reviewers listed by Springer since some oversights are so egregious.  However, I was pleased to see that almost all of my work with Prof. Hobbs on those benchmark experiments was cited, except the one I deemed most important.  Odd.

Some background 

Chapter 8 was originally assigned to Prof. Peter V. Hobbs, the director of my group at the University of Washington.  He was going to use portions of a rejected manuscript of mine on cloud seeding  and peer-review entitled, “Cloud Seeding and the Journal Barriers to Faulty Claims: Closing the Gaps.”  He described the segments he was going to use, the rise and fall of the Colorado and Israeli cloud seeding experiments, as, “pretty good.”   Peter was not easy to please.  That was the highest compliment I had ever received from him for my writing.   The manuscript, submitted in 1997,  was ultimately rejected in 1999 by the Bull. Amer. Meteor. Soc., I. Abrams, Editor,  and again in an updated version by  Advances in Meteorology in 2017 as “not the kind of paper we were looking for” in their issue on weather modification (L. Xue, Editor, personal communication).    But maybe its the kind you were looking for!  So, in a sense that manuscript has been rejected twice, sometimes the sign of something especially good.   (Off topic! Get Back, “Jojo,” as the Beatles sang.

Due to pancreatic cancer, Prof. Hobbs was unable to do this piece chapter and Prof. William R. Cotton, Colorado State University, who later has become a close friend,  took over with the additional “contributors” according to Springer,  Dean Terblanche, Zev Levin, Roelof Bruintjes, and Peter Hobbs, as listed by Springer, and all of whom I greatly admire, making these comments “difficult;” “Why am I doing this?”  Etc.

For review purposes, I have copied under the rubric of “fair use,” only those portions of Chapter 8 relevant to my expertise.   To repeat, overall, its a good review.  However, I have added commentaries in a red font following the original statements of the authors (black font) that need clarification, correction, or additions.  References to relevant articles that went uncited in Chapter 8 have been added at the end of this review and are appended with a “u” for uncited.  I have added after those all the references that WERE cited in this review and appear in the original text.  Mielke (1976) cited by the authors, does not appear in the list of their references.

========================================

List of illustrious reviewers of the Springer volume:

Chairperson: Dr.George IsaacEnvironment Canada.                       (Name, affiliation, country).

Ayers, Greg,  CSIRO Marine and Atmospheric Research, Australia

Barth, Mary, National Center of Atmospheric Research, USA

Bormann, Stephan,  Johannes-Gutenberg-University, Germany

Choularton, Thomas, University of Manchester, UK.

DeMott, Paul, Colorado State University, USA.

Flossmann, Andrea, Laboratoirede Mitiorologie Physique/OPGC Universiti: Blaise Pascal/C RS, France

Kahn, Ralph, Jet Propulsion Laboratory, USA

Khain, Alexander, The Hebrew University ofJerusalem, Israel

Leaitch, Richard, Environment Canada, Canada

Pandis, Spyros, University of Patras, Greece

Rosenfeld, Daniel, The Hebrew University ofJerusalem, Israel.

Ryan, Brian, CSIRO Marine and Atmospheric Research, Australia

Twohy, Cynthia, Oregon State University, USA.

Vali, Gabor, University of Wyoming, USA.

Yau,  Peter, McGill University, Canada

Zipser, Ed, University of Utah, USA

=============================================

….and now, very belatedly reviewing Chapter 8, yours truly, the less illustrious,  Arthur L. Rangno,  retiree,                                                                                                                                                                                                Research Scientist IV, Cloud and Aerosol Research Group, Atmospheric Sciences Department, University of Washington, USA:

================

Chapter 8 in Aerosol Impacts on Precipitation:“Parallels and Contrasts Between Deliberate Cloud Seeding and Aerosol Pollution Effects”

8.1    Deliberate cloud seeding, with the goal of increasing precipitation by the injection of specific types of particles into clouds, has been pursued for over 50 years. Efforts to understand theprocesses involved have led to a significant body of knowledge about clouds and about the effects ofthe seeding aerosol. A number of projects focused on the statistical evaluation of whether a seeding effect can be distinguished in the presence of considerable natural variability. Both the knowledge gained from these experiments, and the awareness of the limitations in that understanding, are relevant to the general question of aerosol effects on precipitation. Definite proof from the seeding projects for an induced increase in precipitation as a result of the addition of seeding material to the clouds would represent a powerful demonstration of at least one type of dominant aerosol­ precipitation link in the clouds involved. Therefore, in this chapter we review the fundamental conceptsof cloud seeding and overview the parallels and contrasts between evaluations of deliberate and inadvertent modification of precipitation by aerosols. It is not our intent to provide a comprehensive assessment of the current status of cloud seeding research. We direct the reader to more compre­hensive weather modification assessments in NRC (2003), Cotton and Pielke (2007), Silverman (2001, 2003),and Garstang et al. (2005).

Deliberate cloud seeding experiments can be divided into two broad categories: glaciogenic seeding and hygroscopic seeding. Glaciogenic seeding occurs when ice-producing materials (e.g. dry ice (solid CO2), silver iodide, liquid propane etc.) are injected into a supercooled cloud for the purpose of stimulating precipitation by the ice particle mechanism (see Sect. 2.2). The underlying hypothesis for glaciogenic seeding is that there is commonly a deficiency of natural ice nuclei and therefore insufficient ice particles for the cloud to produce precipitation as efficiently as it would in the absence of seeding.

The second category of artificial seeding experiments is referred to as hygroscopic seeding. In the past this type of seeding was usually used for rain enhancement from warm clouds (see Cotton 1982 for a review of early hygroscopic seeding research).

However, more recently this type of seeding has been applied to mixed phase clouds as well. The goal of this type of seeding is to increase the concentration of collector drops that can grow efficiently into raindrops by collecting smaller droplets and by enhancing the formation of frozen raindrops and graupel particles. This is done by injecting into a cloud (generally at cloud base) large or giant hygroscopic particles (e.g., salt powders) that can grow rapidly by the condensation of water vapour to produce collector drops (see Sect. 2.3).

Static Glaciogenic Cloud Seeding

Static cloud seeding refers to the use of glaciogenic materials to modify the microstructures ofsupercooled clouds and precipitation. Many hundreds of such experiments have been carried over the past 50 years or so. Some are operational cloud seeding experiments (many of which are still being carried out around the world) which rarely provide sufficient information to decide whether or not they modified either clouds or precipitation. Others are well designed scientific experiments that provide extensive measurements and modeling studies that permit an assessment of whether artificial seeding modified cloud structures and, if the seeding was randomized, the effects of the seeding on precipitation. While there still is some debate of what constitutes firm “proof”(see NRC 2003; Garstang et al. 2005) that seeding affects precipitation, generally it is required that both strong physical evidence of appropriate modifications to cloud structures and highly significant statistical evidence be obtained.

My comprehensive, “critical” review and enhancement of NRC 2003 is here.  Compared to the 1973 NRC review, the NRC 2003 one was merely a superstructure, a Hollywood movie set, not the real deal.  

The reason?  

Too much literature to review in depth even for the illustrious authors of the NRC 2003 report.   Professor Garstang did ask my boss, Prof. Peter V. Hobbs to participate in the 2003 review, but he declined the offer telling me that it would be better if we “commented” on the 2003 review after it was published if necessary.  I nodded and went back to my desk.  Peter usually knew best.  Fate intervened.  Peter came down with pancreatic cancer and our review  of the 2003 report never happened until I got to it years later.

  • Glaciogenic Seeding of Cumulus Clouds

The static seeding concept has been applied to supercooled cumulus clouds and tested in a variety of regions. Two landmark experiments (Israeli I and Israeli II), carried out in Israel, were described in the peer-reviewed literature. The experiments were carried out by researchers at the Hebrew University of Jerusalem (HUJ), hereafter the experimenters. These two experiments were the foundation for the general view that under appropriate conditions, cloud seeding increases precipitation (e.g. N.R.C. 1973; Sax et al. 1975; Tukey et al. 1978a, b; Simpson 1979; Dennis 1980; Mason 1980,1982; Kerr 1982; Silverman 1986; Braham 1986; Cotton 1986a, b; Cotton and Pielke 1992, 1997; Young1993).

Nonetheless, reanalysis of those experiments by Rangno and Hobbs (1993-sic) suggested that the appearance of seeding-caused increases in rainfall in the Israel I experiment was due to “lucky draws” or a Type I statistical error.

The correct year for Rangno and Hobbs is 1995, not 1993 .   Having the wrong year in a reference is a not a good sign right off the bat.  

The first evidence for a lucky draw in Israeli I was presented by Wurtele (1971u) when she reported that the little seeded Buffer Zone between the two targets exhibited the greatest statistical significance in rainfall in either target on Center seeded days.  Wurtele (1971u) quoted the Israeli I chief meteorologist that the Buffer Zone could only have been inadvertently seeded but 5-10% of the time, and “probably less.”  Wurtele should have been cited.  The wind analysis when rain was falling at the launch site near the BZ in Rangno and Hobbs (1995) supports the chief meteorologist’s view.  It would have taken a very bad pilot to have seeded the BZ if he had been instructed not to.

Furthermore, Rangno and Hobbs (1993 sic) argued that during Israel II naturally heavy rainfall over a wide region encompassing the north target area gave the appearance that seeding caused increases in rainfall over the north target area.

The first evidence for naturally heavy rain over a wide region in Israel II, including both targets on north target seeded days, was presented by Gabriel and Rosenfeld (1990u), a critical article  that somehow that went uncited by the authors of Chapter 8.   Gabriel and Rosenfeld stated that the degree of heavy rain on north target seeded days in the south target, from a historical study, was “clearly statistically significant.” 

Rangno and Hobbs (1995) added to that evidence by analyzing rainfall over wide region that included Lebanon and Jordan on north target seeded days.  The Rangno and Hobbs (1995) analysis corroborated the statement by Gabriel and Rosenfeld (1990) concerning a lopsided draw on north target seeded days of Israeli II that affected most of Israel.  In fact, the greatest apparent effect of cloud seeding on north target seeded days was in the south target at Jerusalem (Rangno and Hobbs 1995)!

Deeply troubling, too,  is why the “full results” of the Israeli II experiment by Gabriel and Rosenfeld (1990u) was not cited in a supposed review of those experiments.  The null result of the “full analysis” of Israel II which incorporated random seeding in the South target,  had been omitted in previous reporting by Gagin and Neumann (1976u, 1981).  The “full” results reported by Gabriel and Rosenfeld (1990u) was an extremely important development:  Israeli II had not replicated Israeli I when evaluated in the same way.  Furthermore, the a priori design of Israeli II specified by the Israel Rain Committee mandated that a crossover evaluation be carried out (Silverman 2001).

However, the null result of Israeli II left some questions in the minds of Gabriel and Rosenfeld (1990u).  Were actual rain increases in the north canceled out by decreases in rain on seeded days in the south target resulting in a null overall result?

This idea was later posited by Rosenfeld and Farbstein (1992) as a valid explanation and the disparate results was attributed to dust/haze.  This hypothesis ignored the fact that unusually heavy rain fell on the south target when the north was being seeded.   This left little chance for the south target’s seeded days to overcome this lopsided disadvantage, thus  leaving the impression that seeding had decreased rainfall when rainfall on the control and seeded days in the south target were compared.  Why this was not clear remains a puzzle.

At the same time, lower natural rainfall in the region encompassing the south target area gave the appearance that seeding decreased rainfall over that target area. But this speculation could not explain the positive effect when the north target area was evaluated against the north upwind control area.

Levin et al. 2010u (and unavailable to these authors) also reanalyzed Israeli II and found that a synoptic bias had produced the misperception of seeding effects downwind from the coastal control region mentioned above.    Levin et al’s 2010u conclusions corroborated the Rangno and Hobbs (1995) evaluation of Israeli II described inappropriately as “speculation” by the authors of Chapter 8.  

Details of this controversy can be found in the March 1997 issue of the Journal of Applied Meteorology (Rosenfeld 1997; Rangno and Hobbs 1997a; Dennis and Orville 1997; Rangno and Hobbs1997b; Woodley 1997; Rangno and Hobbs 1997c;  Ben-Zvi 1997; Rangno and Hobbs 1997d; Rangno and Hobbs 1997e). Some of these responses clarified issues; others have left a number of questions unanswered.

The authors should have indicated for the reader what questions were left unanswered.  

However, the exchanges between pro-seeding partisans and Rangno and Hobbs (1997) were extremely important because they led the Israel National Water Authority to form an independent panel of experts to ascertain what the result of operational seeding of the watersheds around Lake Kinneret (aka, Sea of Galilee) was over the decades.  Operational seeding began during the 1975/76 rain season.

The reports of the independent panel (Kessler et al. 2002u, 2006u) were apparently unknown to the authors of this review.  Key elements of the final 2006 report were reprised by Sharon et al. (2008u):  Twenty-seven winter seasons  (75/76 through 01/02)  of operational seeding had not led to an indication that rain had been increased, due to cloud seeding,  an astounding result considering the cost of seeding for so long a period.

Below is a graphical presentation of the independent panel’s findings in their 2006 final report:

Figure 1. The results of operational seeding on the watersheds of Lake Kinneret (aka, Sea of Galilee) as reported by Kessler et al. 2006.  (a) is that result of seeding on rainfall reported by Nirel and Rosenfeld (1995), b-d are the results found for various periods, including the very same era evaluated by Nirel and Rosenfeld (1995).[1]

————-footnote———-

[1] The findings of Kessler were challenged by seeding partisans at the HUJ and who claimed that “air pollution” was decreasing rain as much as cloud seeding was increasing it.  While this was a convenient explanation, it was not found credible by many subsequent independent investigators, including by Kessler et al. (2006).

—————————continuing with Chapter 8————–

8 Deliberate Cloud Seeding and Aerosol Pollution Effects

It is interesting to note that in the Israeli experiments the effects of artificial seeding with silver iodide appeared to be an increase in the duration of precipi­ tation, with little if any effect on the intensity of precipitation (Gagin 1986; Gagin and Gabriel 1987), a finding compatible with the “static” seeding hypothesis.

The ersatz Colorado State University cloud seeding experiment results had exactly the same outcome as those described above in Israel.  In retrospect, the duration findings from both the Colorado and Israeli scientists were huge red flags that a natural bias on seeded days had occurred in these experiments as was shown in later reanalyses by external skeptics (e.g., Rhea 1983u, Rangno and Hobbs 1987).

Givati and Rosenfeld (2005) wrote, “that cloud seeding with silver iodide enhances precipitation especially where the orographic enhancement factor (see Chapter 6) was the largest. Likewise, the pollution effects reduced precipitation by the greatest amount at the same regions”. They suggestedthat this is because the shallow and short-living orographic clouds are particularly susceptible to such impacts. This suggests that attempts to alter winter precipitation should be concentrated on orographic clouds. Or interpreted in terms of inadvertent modification of clouds; winter orographic clouds may be the most susceptible to precipitation modification by pollution.

The Israeli “experimenters,” who cost their government so much in wasted cloud seeding effort, could not walk away and apologize for their misguided findings and withheld results.  So Givati and Rosenfeld (2005) generated the argument that pollution was exactly canceling out cloud seeding effects!  Of course, the air pollution argument was nonsense, the result of cherry picking amid the 500 or so Israeli rain gauges in Israel.   Here’s what the uncited Kessler et al. (2006u) report had to say about the Givati and Rosenfeld (2005) claims about air pollution:

No supporting evidence was found for the thesis of Givati and Rosenfeld (2005) regarding the decline in the Orographic precipitations (sic) due to the increase of air pollution.”

The air pollution claims by Givati and Rosenfeld (2005), while superficially credible,  except for their sudden hypothesized appearance that canceled out cloud seeding effects, were also evaluated by several independent groups and scientists in later publications not available to the authors of this review:  Alpert et al. (2008u); Halfon et al. (2009u);  Levin (2009u), Ayers and Levin (2009u).  All these independent re-analyses and reviews of the hypothesized effect of air pollution on rainfall found the argument that air pollution had canceled seeding-induced increases in rain unconvincing.

This also suggests that the conceptual model on which the Israeli cloud seeding experiments was based is not exactly as postulated. The seeding was originally aimed at the convective clouds that formed over the narrow coastal plain, with the intent of nucleating ice crystals and forming graupel earlier in the cloud life cycle (Gagin and Neumann 1974), thus leading to increased rainfall in the catchment basin of the Sea of Galilee to the east of the Galilee Mountains. However, the report of Givati and Rosenfeld (2005) concluded that “cloud seeding did not enhance the convective precipitation, but rather increased the orographic precipitation on the upwind side of the Mountains, probably by the Bergeron-Findeisen process.”

The above is not what Kessler et al. (2006u) concluded.   It was a shame that the authors did not know about Kessler et al.’s report.

To update this review, the idea posited by Rosenfeld and Givati (2005) about seeding orographic clouds, promoted by these authors, was tested in Israel-4, a seven season randomized experiment (Benjamini et al. 2023u).  Seeding in the orographic north of Israel resulted in no viable effect on rainfall.  This should not be surprising.

The lack of enhancement of the convective clouds in Israel might be explained by their tendency to mature and dissipate inland during the winter storms. Seeding of mature convective clouds cannot affect them much. The lack of enhancement is also consistent with the microphysically maritime nature of the convective clouds.

The authors seem to be unaware that for decades the cloud seeding experimenters had reported in their many publications that the clouds of Israel were “continental” in nature (e.g., Gagin and Neumann 1974, 1976u, Gagin 1975u), that is, they contained high droplet concentrations that made them extremely “un-maritime.”  This in turn helped generate scientific consensus that seeding such clouds had produced viable results on rainfall  in Israeli I and Israeli II because it was hard for them to rain and needed cloud seeding  (e.g., Kerr 1982, Silverman 1986, Dennis 1989).

This appears to be caused mainly due to the natural hygroscopic seeding by sea spray or mineral dust particles coated with soluble material (Levin et al.1996, 2005) in the winter storms that enhance the warm precipitation (Rosenfeld et al. 2001) as well as promoting the formation of ice hydrometeors that is followed by ice multiplication (Hallett and Mossop 1974).

In a surprising oversight in a supposed “scientific review,” the authors do not cite Rangno (1988) who described so long ago the clouds of Israel as we know them today; ones that rain via warm rain processes and precipitate regularly via the ice process when top temperatures are >-10°C, all contrary to the many reports of the cloud seeding experimenters (e.g., Gagin 1986).

Moreover, it has not been satisfactorily determined why the Israeli cloud seeding experimenters could not discern the natural precipitating characteristics of their clouds with all the tools available to them for so many decades.  Did the wind not blow over the Mediterranean during Israeli I and II, thus did not “maritimize” clouds when Prof. Gagin was observing them with his radars and sampling them with his research aircraft?

I spent 11 weeks in Israel from early January through mid-March 1986 studying the precipitating nature of Israeli clouds. I spoke with Israel Meteorological Service forecasters, and the chief forecaster of the Israeli randomized experiments.   Not surprisingly, they were all aware of the natural character of their rain clouds that so eluded the cloud seeding researchers at the HUJ; faulty descriptions of clouds were published by HUJ seeding researchers repeatedly in peer-reviewed journals.  How did this happen?

These suggestions are supported by the results of glaciogenic cloud seeding in Tasmania, which targeted a hilly area by seeding along an upwind coastline. The seeding in Tasmania was shown to enhance precipitation from the stratiform orographic clouds, but not from the convective clouds (Ryan and King 1997). This is consistent with the microphysical conclusions of Rangno and Hobbs (1993 sic), who asserted that, cloud seeding as done in Israel could not have possibly caused the statistically documented rain enhancement from the convective clouds there.

Again, the correct year for Rangno and Hobbs is 1995.  

The minimal amount of cloud seeding in Israeli I should have been discussed. The experimenters realized this post facto of Israel-1 and added a second seeding aircraft and no less than 42 ground generators (NRC 1973) when conducting Israel II.  The difference in released seeding material in Israeli II from the ~1000 grams released in all of Israeli I (Gabriel and Neumann (1967) has to be stupefying and raises questions.

Do the authors of this chapter really think that only 70 h of line seeding by a single aircraft upwind of each target per whole Israeli rain season could have produced a statistically significant result in rainfall in Israeli I?  Do they know that the coverage of convective clouds with rising air below cloud base is spotty,  that the rain that comes into Israel from the Mediterranean are “tangled masses” in various life cycle stages  (as described by Neumann et al. 1967)? 

Recently, Givati and Rosenfeld (2005) carried out a study in which the effects of pollution on rainfall suppression in orographic clouds were separated from the effects of cloud seeding in Israel. They concluded that the two effects have the opposite influence on rainfall, demonstrating the sensitivity of clouds to anthropogenic aerosols of different kinds. By analyzing the rainfall amounts in northern Israel during the last 53 years during days in which no seeding was carried out, they observed a decreasing trend of the orographic factor R0 (discussed in Chapter 6) with time from the beginning of the study. They associated this decrease with the increase in aerosol pollution. The same trend, but shifted upward by 12-14%, was observed for days in which seeding was carried out. Thus, it appears that the opposing effects of air pollution and seeding appear to have nearly canceled each other.

The air pollution canceling cloud seeding claims by Rosenfeld and colleagues have not been deemed credible to those who have investigated them, listed previously.  

Another noteworthy experiment was carried out in the high plains of the U.S. (High Plains Experiment (HIPLEX-1) Smith et al.(1984).Analysis of this experiment revealed the important result that after just 5 min, there was no statistically significant difference in the precipitation between seeded and non-seeded clouds, (Mielke et al. 1984). Cooper and Lawson( 1984) found that while high ice crystal concentrations were produced in the clouds by seeding, the cloud droplet region where the crystals formed evaporated too quickly for the incipient artificially produced ice crystals to grow to appreciable sizes. Instead, they formed low density, unrimed aggregates having the water equivalent of only drizzle drops, which were too small to reach the ground before evaporating. Schemenauer and Tsonis( 1985) affirmed the findings of Cooper and Lawson in a reanalysisof the HIPLEX data emphasizing their own earlier findings (Isaac et al. 1982) that cloud lifetimes were too short in the HIPLEX domain for seeding to have been effective in the clouds targeted for seeding (i.e. Those with tops warmer than -12°C). Although the experiment failed to demonstrate statistically all the hypothesized steps, the problems could be traced to the physical short lifetimes of the clouds (Cooper and Lawson 1984; Schemenauer and Tsonis 1985). This in itself is a significant result that shows the ability of physical measurements and studies to provide an understanding of the underlying processes in each experiment. The results suggested that a more limited window of opportunity exists for precipitation enhancement than was thought previously.  Cotton and Pielke (1995) summarized this window of opportunity as being limited to: Clouds that are relatively cold-based and continental; Clouds with top temperatures in the range -1O° to-25°C, and a timescale confined to the availability of significant supercooled water before depletion by entrainment and natural precipitation processes.

Today, this window would even be viewed as too large, since many cold based continental clouds with tops>-25°C have copious ice particle concentrations(e.g., Auer et al. 1969u, Cooper and Saunders 1980u, Cooper and Vali 1981u, Grant et al. 1982u.  These references were added to make them more appropriate for inland mountain locations). The HIPLEX results also indicated that small clouds make little contribution to rainfall.

This begs the question, should we expect a similar window of effectiveness for inadvertent IN pollution?

 8.1.1. Seeding Winter Orographic Clouds

The static mode of cloud seeding has also been applied to orographic clouds. Precipitation enhancement of orographic clouds by cloud seeding has several advantages over cumulus clouds. The clouds are persistent features that produce precipitation even in the absence of large-scale meteorological disturbances. Much of the precipitation is spatially confined to high mountainous regions thus making it easier to set up dense ground based seeding and observational networks. Moreover, orographic clouds are less susceptible to a “time window” as they are steady clouds that offer a greater opportunity for successful precipitation enhancement than cumulus clouds. A time window of a different type does exist for orographic clouds, which are related to the time it takes a parcel of air to condense to form supercooled liquid water and ice crystals while ascending to the mountain crest.

Missing in this discussion is the time that ice forms in orographic clouds after the leading edge forms as a droplet cloud. Ice particles have been shown to form a short distance downwind at surprisingly high temperatures as reported by Auer et al (1969u), Cooper and Vali (1981u).  

What then is the effect of introducing ice by AgI at an upwind edge where ice is already going to form immediately downwind in those situations?  Does this case represent a productive seeding possibility?  This scenario should have been discussed by the Chapter 8 authors.

The special case described here of non-precipitating clouds, where cloud seeding will be effective without question is not quantified.  How often do they occur, and how thick are they?  What is their cloud top temperature?  Are bases low enough so that the light, seeding-induced snowfall will reach the ground?  Will it be enough to justify the cost of seeding, by ground or aircraft?

The Chapter 8 authors were not aware of Rangno (1986u) who displayed the rapid changes in cloud characteristics that made seeding even orographic clouds problematic due to those changes in cloud top temperatures and in wind directions over periods of just 3-4 hours.

So many questions, so few answers by the authors, elements that point to the extreme difficulty of proper reviews in any field in meteorology!

If winds are weak, then there may be sufficient time for natural precipitation processes to occur efficiently. Stronger winds may not allow efficient natural precipitation processes but seeding may speed up precipitation formation. Stronger winds may not provide enough time for seeded icecrystals to grow to precipitation before being blown over the mountain crest and evaporating in the sinking sub saturated air to the lee of the mountain. A time window related to the ambient winds, however, is much easier to assess in a field setting than the time window in cumulus clouds.

The landmark randomized cloud seeding experiments at Climax, near Fremont Pass, Colorado (referred to as Climax I and Climax II), Colorado, reported by Grant and Mielke(1967) and Mielke et al.( 1970,1971) suggested increases in precipitation of 50% and more on favorable days (e.g. Grant and Mielke 1967; Mielke et al. 1970,1971), and the results were widely viewed as demonstrating the efficacy of cloud seeding (e.g. NRC 1973; Sax et al. 1975; Tukey et al. l978a, b; American Meteorological Society 1984),even by those most skeptical of cloud seeding claims(e.g. Mason 1980,1982). Nonetheless, Hobbs and Rangno (1979), Rangno and Hobbs (1987, 1993) question both the randomization techniques and the quality of data collected during those experiments and conclude that the Climax II experiment failed to confirm that precipitation can be increased by cloud seeding in the Colorado Rockies.

It appears that these cited critical papers by the present writer were not read by the authors of this review.  Hobbs and Rangno (1979), a study originated and carried out by the second author, demonstrated that the claims about a physical foundation for the Climax experiments were bogus.  These important findings was left out of the discussion above.   The experimenters had claimed out of thin air (Grant and Mielke 1967) that the stratifications by 500 mb temperatures were reliably connected to cloud top ones.

Moreover, the precipitation per day (PPD) does not decrease at Climax (or elsewhere in the Rockies) after a 500 mb temperature of -20°C is exceeded as the experimenters claimed (e.g., Grant et al. 1969u, 1974u, Chappell 1970u).  Rather, the PPD continues to increase at temperatures above -20°C as shown in Rangno 1979, Hobbs and Rangno (1979).   The decrease in PPD that occurred during Climax I when the 500 mb temperature was >-20° C was indicative of a bias in the draw on the Climax I control days rather than representative of PPD climatology. 

Hobbs and Rangno (1979) further demonstrated that the master’s thesis repeatedly invoked by the experimenters in support of the 500 mb/cloud top temperature correspondence claim (e.g., Grant and Elliott 1974) did no such thing,  but rather proved just the opposite.  This was due to the way that meteorological data were assigned to experimental days by the experimenters (i. e., as described by Fritsch in Grant et al. 1974u).   Critical papers were not read by the authors.  Q. E. D.

Quoting the authors from their paragraph above:  “the quality of the data collected during those experiments”.

This is a euphemism for what Rangno and Hobbs (1987) found.

The experimenters repeatedly described the NOAA-maintained recording gauge in the center of the Climax target as “independently” collected data (e.g., Mielke et al. 1970).  Rangno and Hobbs simply went to the NOAA hourly precipitation data publication for Colorado and used those data to evaluate the Climax experiments. Those published data were not the same as those used by the experimenters. 

The experimenters had, in fact, reduced the recording charts at that key gauge in Climax II themselves as revealed by Mielke 1995, and in doing so, helped the seeded day cases (Rangno and Hobbs 1987).  Climax II, not so lucky in its storm draw on seeded days as Climax I, was plagued by “helpful” errors.  Thirty-two of 43 differences in precipitation between that used by the experimenters and that in the NOAA publication helped the seeded cases.  The chance that such results came from an unbiased source can be rejected at a P value of 0.0001.

Climax I, however, benefitting from a storm draw on seeded days that favored the appearance of a cloud seeding effect in its first half of conduct,  had virtually no errors in data.

What do we make of this?  Circle the wagons? 

Or come to a logical conclusion that someone helped the Climax experiment replicate Climax II?  At this time, mid-way through Climax II, the Bureau of Reclamation’s cloud seeding division had begun spending hundreds of thousands of dollars on the planning of the Colorado River Basin Pilot Project.  There was, therefore, enormous pressure on the experimenters to have Climax II replicate Climax I.  

We let the reader decide what may have happened.

———-

Inexplicably, the authors of this chapter omit the reanalysis of Mielke et al. (1981) by Rhea (1983u).  Indeed, this author’s own independent reanalysis of the Climax experiments (rejected in 1983) was partially because reviewers’ thought Rhea’s reanalysis, simultaneously under review and that came to the same result, was more robust.  Rhea showed that the mismatch between the time the control gauges were read and when the Climax target gauges were read resulted in the false impression that Climax II had replicated Climax I.  When the gauges were synchronized by Rhea (1983u), the Climax II seeding increases disappeared (as they also did using the published NOAA data in Rangno and Hobbs (1987).

A background note:  Grant et al. 1983u, however, strongly criticized the Rhea reanalysis before it was published.  Rhea altered his reanalysis along the lines suggested by Grant et al. prior to publication.  Nevertheless, Grant et al. did not revise their published comment to account for Rhea’s revisions.  Grant, in a personal note to Rhea at that time, did not know why he and his group had not altered their criticism of Rhea’s revised manuscript.

The published record concerning Rhea’s reanalysis is, therefore confusing; the experimenters appeared to critique Rhea’s paper while not actually doing so.

Even so, in their reanalysis, Rangno and Hobbs(1993) did show that precipitation increased by about 10% in the combined Climax I and II experiments.

First, the so-called “10% increase in precipitation for all of the Climax I and II experiments was “built in” by the choice of control stations mid-way through Climax I by the experimenters  as demonstrated in Rangno and Hobbs (1993).   We are sure the authors did not read that 1993 paper.  Control stations should have been selected prior to the Climax I experiment as good design demands.  Otherwise, the temptation to cherry-pick control stations that prove what the experimenters already believe becomes too big a temptation and that is surely what happened in Climax I at the half-way point.

If the seeding effect is real, it will continue following a cherry-picked group of control stations.  If there is no further sign of seeding, as shown in “Climax 1B,” the second half of Climax I by Rangno and Hobbs (1993) then we know that the gauges were picked because it showed what the experimenters believed before the experiment even began.  The lack of any sign of an effect of cloud seeding on precipitation continued through all of Climax II as well (Rangno and Hobbs 1993).

Finally, 1000 re-randomizations of the Climax data performed by the University Washington Academic Computer Center by Irina Gorodnoskya (unpublished data) showed that the 10% claimed increase in precipitation by the authors above was in the noise of these experiments.  It should not be quoted as an increase in snow due to seeding as the authors do here.

This should be compared, however, to the original analyses by Grant and Mielke (1967), Grant and Kahan (1974), Grant and Elliott (1974), Mielke et al. (1971), Mielke et al. (1976) and Mielke et al. (1981) that indicated greater than 100% increase in precipitation on seeded days for Climax I and 24% for Climax II.

Two other randomized orographic cloud seeing experiments, the Lake Almanor Experiment (Mooney and Lunn 1969) and the Bridger Range Experiment (BRE) as reported by Super and Heimbach (1983) and Super (1986) suggested positive results.

Of concern is that the “cold westerly” case in Phase I of the Lake Almanor experiment, where large seeding effects were reported was not reported in Phase II (Bartlett et al. 1975).   Also, the large increases (40%) in snow  reported in Phase I for cold westerly cases, is suspect since such clouds are likely to develop high natural ice particle concentrations naturally.  The Lake Almanor Phase I  is badly in need of a reanalysis by external skeptics;  its results should not be taken at face value.

 However, these particular experiments used high elevation AgJ generators, which increase the chance that the Agl plumes get into the supercooled clouds. Moreover, both experiments providedphysical measurements that support the statistical results (Super and Heimbach 1983, 1988).

There have been a few attempts to use mesoscale models to evaluate cloud seeding programs. Cottonet al. (2006) applied the Colorado State University Regional Atmospheric Modeling System(RAMS)to thesimulation of operational cloud seeding in the central Colorado Mountains in the 2003-2004 winterseason. The model included explicit representation of surface generator production of Agl at thelocations, burn rates, and times supplied by the seeding operator. Moreover, the model explicitlyrepresented the transport and diffusion of the seeding material, its activation, growth of icecrystals and snow,and precipitation to the surface. Detailed evaluation of model forecast orographicprecipitation was performed for 30 selected operational seeding days. It was shown that the model could be a useful forecasting aid in support of the seeding operations. But the model over-predictednatural precipitation, particularly on moist southwest flow days. The model also exhibited virtually no enhancement in precipitation due to glaciogenic seeding. There are a number of possiblecauses for the lack of response to seeding, such as over prediction of natural precipitation, which prevented the effects of seeding from being seen. In addition, the background CCN and INconcentrations are unknown, therefore lower CCN concentrations than occurred would make the cloudsmore efficient in precipitation production, thus reducing seeding effectiveness.

Finally, Ryan and King(1997) reviewed over 14 cloud seeding experiments covering much of southeastern, western,and central Australia, as well as the island of Tasmania. They concluded that static seeding over the plains of Australia is not effective. They argue that for orographic stratiform clouds, there is strong statistical evidence that cloud seeding increased rainfall, perhaps by as much as 30% over Tasmania when cloud top temperatures are between -10 and -l2°C in southwesterly airflow. The evidence that cloud seeding had similar effects in orographic clouds overthe mainland of southeastern Australia is much weaker. Note that the Tasmanian experiment had bothstrong statistical and physical measurement components and thus meets, or at least comes close to meeting, the NRC (2003) criteria for scientific “proof.” Cost/benefit analysis ofthe Tasmanian experiments suggests that seeding has a gain of about 13:1. This is viewed as a real gain to hydrologic energy production.

A complication revealed in the analysis of some of the Australian seeding experiments is thatprecipitation increases were inferred one to three weeks following seeding in several seedingprojects(e.g. Bigg and Turton 1988). Bigg and Turton ( I988) and Bigg ( 1988, 1990, 1995) suggestedthat silver iodide seeding can trigger biogenic production of additional ice nuclei. The latter research suggests that fields sprayed with silver iodide release secondary ice nuclei particles at intervals of up to ten days.

In summary, the “static” mode of cloud seeding has been shown to cause the expected alterations incloud microstructure including increased concentra­ tions of ice crystals, reductions of supercooled liquid water content, and more rapid production of precipitation elements in both cumuli (Isaac et al.1982; Cooper and Lawson 1984)and orographic clouds(Reynolds and Dennis 1986; Reynolds 1988;Super andBoe 1988; Super et al. 1988; Super and Heimbach 1988). The documentation of increases in precipitation on the ground due to static seeding of cumuli, however, has been far more elusive, with the Israeli experiment (Gagin and Neumann 1981) providing the strongest evidence that static seeding of cold-based, continental cumuli can cause significant increases of precipitation on the ground.  

Tukey et al. (1978b, Appendendix C, pC.1) wrote:   “The strongest evidence for rainfall enhancement involving the seven latest substantial experiments this task force has studied seems today to be that from the two Israeli experiments….”  The statement in blue (highlighted by this writer) which is almost the exact wording as that found in Turkey et al. (1978b) 30 years before the Springer book was published) is troubling indeed.    The assessment by Turkey et al. in 1978 was valid; it was not valid 30 years later when so much water has gone under the bridge concerning the Israeli cloud seeding experiments (or,  “too little water” due to cloud seeding).

Moreover,  citing Gagin and Neumann (1981) in 2009 as the strongest evidence in support of cloud seeding as they do,  demonstrated that the authors of this review were not aware of,  nor understood the literature in the topic they are supposedly reviewing.  The omission of critical literature by the authors as was proof of this assertion.

Why wasn’t I asked to review this manuscript in advance of publication since I am well-known as an expert on both the Colorado and Israel clouds, weather, and cloud seeding experiments?  Moreover, the authors of this review knew this.

The evidence that orographic clouds can cause significant increases in snowpack is far more compelling, particularly in the more continental and cold-based orographic clouds (Mielke et al. 1981; Super and Heimbach 1988).

The authors omit Rhea’s 1983u reanalysis of Mielke et al. 1981 and that of Rangno and Hobbs (1987) in remarking that “significant increases in snowpack” have been compellingly shown by Mielke et al. 1981.

Update to the orographic seeding claim above by the authors:  The NCAR Wyoming experiment, completed in 2013 (Rasmussen et al. 2018u), could find no viable evidence that seeding from ground generators had increased precipitation after six seasons of randomized seeding.

Perhaps, however, the most challenging obstacle to evaluating cloud seeding experiments to enhance precipitation, is the inherent natural variability of precipitation in space and time, and the inability to increase precipitation amounts to better than ~10%. This last obstacle puts great demands on the measuring accuracy and the duration of the experiments. Shouldn’t we expect similar obstacles in evaluating inadvertent effects of IN pollution on precipitation?

A well-stated description of the problem.

===================================================

 List of references mentioned in the critical review that were uncited by the authors, or are relevant papers for an enhancement of Chapter 8 that were unavailable to these authors because they were published after Chapter 8 appeared.

Alpert, P., N. Halfon, and Z. Levin, 2008: Does air pollution really suppress precipitation in Israel?  J. Appl. Meteor. Climatology, 47, 943-948.

Alpert, P., N. Halfon, and Z. Levin, 2009:  Reply to Givati and Rosenfeld.  J. Appl. Meteor. Climatology, 48, 1751-1754.

Auer, A. H., D. L. Veal, and J. D. Marwitz, 1969: Observations of ice crystals and ice nuclei observations in stable cap clouds.  J. Atmos. Sci., 26, 1342-1343.

Ayers, G., and Levin, 2009:  Air pollution and precipitation.  In Clouds in the Perturbed Climate System.  Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation. J. Heintzenberg and R. J. Charlson, Eds.  MIT Press, 369-399.

Bartlett, J. P., M. L. Mooney, and W. L. Scott, 1975:  Lake Almanor Cloud Seeding Program.  Preprint, Weather Modification Conference, San Francisco, 106-110.

Benjamini, Y, A. Givati, P. Khain, Y. Levi, D. Rosenfeld, U. Shamir, A. Siegel, A. Zipori, B. Ziv, and D. M. Steinberg, 2023:  The Israel 4 Cloud Seeding Experiment: Primary Results.   J. Appl. Meteor. Climate, 62, 317-327.  https://doi.org/10.1175/JAMC-D-22-0077.1

Chappell, C. F.,  1970:  Modification of cold orographic clouds.  Atmos. Sci. Paper No. 173, Dept. of Atmos. Sci., Colorado State University, Fort Collins, 196pp.

Cooper, W. A., and C. P. R. Saunders, 1980:  Winter storms over the San Juan mountains.  Part II:  Microphysical processes.  J. Appl. Meteor., 19, 927-941.

Cooper, W. A., and G. Vali, 1981:  The origin of ice in mountain cap clouds.  J. Atmos. Sci., 38, 1244-1259.

Dennis, A. S., 1989: Editorial to the A. Gagin Memorial Issue of the J. Appl. Meteor., 28, 1013.  No doi.

Gabriel, K. R., and Y. Neumann, 1978:  A note of explanation on the 1961–67 Israeli rainfall stimulation experiment.  J. Appl. Meteor., 17, 552–556.

Gabriel, K. R., and Rosenfeld, D., 1990: The second Israeli rainfall stimulation experiment: analysis of precipitation on both targets. J. Appl. Meteor., 29, 1055-1067.  https://doi.org/10.1175/1520-0450(1990)029%3C1055:TSIRSE%3E2.0.CO;2

Grant, L. O., DeMott, P. J., and R. M. Rauber, 1982:  An inventory of ice crystal concentrations in a series of stable orographic storms.  Preprints, Conf. Cloud Phys., Chicago, Amer. Meteor. Soc. Boston, MA. 584-587. No doi.

Grant, L. O., J. G. Medina, and P. W. Mielke, Jr., 1983:  Reply to Rhea. J. Climate Appl. Meteor., 22, 1482–1484.

Grant, L. O., C. F. Chappell, L. W. Crow, J. M. Fritsch, and P. W. Mielke, Jr., 1974:  Weather modification: A pilot project.  Final Report to the Bureau of Reclamation, Contract 14-06-D-6467, Colorado State University, 98 pp. plus appendices.

Grant, L. O., Chappell, C. F., Crow, L. W., Mielke, P. W., Jr., Rasmussen, J. L., Shobe, W. E., Stockwell, H., and R. A. Wykstra, 1969:  An operational adaptation program of weather modification for the Colorado River basin.  Interim report to the Bureau of Reclamation, Department of Atmospheric Sciences, Colorado State University, Fort Collins, 98pp.  (Available from the Bureau of Reclamation, Library,   Federal Building, Denver, Colorado 80302.

Halfon, N., Z. Levin, P. Alpert, 2009:  Temporal rainfall fluctuations in Israel and their possible link to urban and air pollution effects.  Environ, Res. Lett., 4, 12pp. doi:10.1088/1748-9326/4/2/025001

Kessler, A., A. Cohen, D. Sharon, 2003:  Analysis of the cloud seeding in Northern Israel.  Interim report submitted to the Israel Hydrology Institute and the Israel Water Management of the Ministry of Infrastructure.

Levin, Z., N. Halfon, and P. Alpert, 2010: Reassessment of rain enhancement experiments and operations in Israel including synoptic considerations.  Atmos. Res., 97, 513-525.

                        http://dx.doi.org/10.1016/j.atmosres.2010.06.011

Levin, Z., N. Halfon, and P. Alpert: 2011:  Reply to the Comment by Ben-Zvi on the paper “Reassessment of rain experiments and operations in Israel including synoptic considerations” Atmos. Res., 99, 593-596.

Mielke, P. W., Jr., 1995:  Comments on the Climax I and II experiments including replies to Rangno and Hobbs.  J. Appl. Meteor., 34, 1228–1232.

National Research Council, 1973: Weather & Climate Modification: Progress and Problems. National Academy of Sciences, 258 pp., https://doi.org/10.17226/20418.

Neumann, J., K. R. Gabriel, and A. Gagin, 1967: Cloud seeding and cloud physics in Israel:  results and problems.  Proc. Intern. Conf. on Water for Peace.  Water for Peace, Vol. 2, 375-388.  No doi.

Rangno, A. L., 1979:  A reanalysis of the Wolf Creek Pass cloud seeding experiment.   J. Appl. Meteor., 18, 579–605.

Rangno, A. L., 1986:  How good are our conceptual models of orographic clouds?  In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, Amer. Meteor. Soc., 115-124. Invited paper, title assigned by A. S. Dennis.

 https://doi.org/10.1175/0065-9401-21.43.115

Rangno, A. L., 1988: Rain from clouds with tops warmer than -10 C in Israel.  Quart J. Roy. Meteor. Soc., 114, 495-513.

   https://doi-org/10.1002/qj.49711448011

Rasmussen, R. M., S. A. Tessendorf, L. Xue, C. Weeks, K. Ikeda, S. Landolt, D. Breed, T. Deshler, and B. Lawrence, 2018:  Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches:  Traditional statistics and ensemble modeling.  J. Appl. Meteor. and Climate, 57, 2639-2660.

Rhea, J. O., 1983:  “Comments on ‘A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments.'”  J. Climate Appl. Meteor., 22, 1475-1481.

Rosenfeld, D., 1998: The third Israeli randomized cloud seeding experiment in the south: evaluation of the results and review of all three experiments. Preprints, 14th Conf. on Planned and Inadvertent Wea. Modif., Everett, Amer. Meteor. Soc. 565-568. No doi.

Sharon, D., A. Kessler, A. Cohen, and E. Doveh, 2008:  The history and recent revision of Israel’s cloud seeding program.  Isr. J. Earth Sci., 57, 65-69.     https://DOI.org/10.1560/IJES.57.1.65.

Wurtele, Z. S., 1971: Analysis of the Israeli cloud seeding experiment by means of concomitant meteorological variables. J. Appl. Meteor., 10, 1185-1192.    https://doi.org/10.1175/1520-0450(1971)010%3C1185:AOTICS%3E2.0.CO;2

Totality of References  in Chapter 8.1, “Introduction” through 8.2.2 “Seeding Winter Orographic Clouds” 

=================================

American Meteorological Society, 1984: Statement on planned and inadvertent weather modification.  Bull. Amer. Meteor. Soc., 66, 447–448.

Ben-Zvi, A., 1997:  Comments on “A new look at the Israeli randomized cloud seeding experiments.” J. Appl. Meteor., 36, 255-256.

Bigg, E. K., 1988: Secondary ice nucleus generation by silver iodide applied to the ground. J. Appl. Meteor., 27, 453-488.

Bigg, E. K., 1990:  Aerosol over the southern ocean. Atmos. Res., 25, 583-600.

Bigg , E. K., 1995:  Tests for persistent effects of cloud seeding in a recent Australian experiment.  J. Appl. Meteor., 34, 2406-2411.

Bigg, E. K., and E. Turton, 1988: Persistent effects of cloud seeding with silver iodide.  J. Appl. Meteor., 27, 505-514

Braham, Roscoe R., Jr., 1986:  Rainfall enhancement–a scientific challenge.  Rainfall Enhancement–A Scientific Challenge, Meteor. Monogr., 21, No. 43,  1–5.

Cooper, W. A., and R. P. Lawson, 1984:  Physical interpretation of results from the HIPLEX-1 experiment.  J. Climate Appl. Meteor., 23, 523-540.

Cotton, W. R., 1982: Modification of precipitation from warm clouds. A review.  Bull. Meteor. Soc., 63, 146-160.

Cotton, W. R., 1986a: Testing, implementation, and evolution of seeding concepts–a review.  In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, Amer. Meteor. Soc., 63-70.

Cotton, W. R., 1986b: Testing, implementation, and evolution of seeding concepts–a review.  In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, Amer. Meteor. Soc., 139-149.

Cotton, W. R., and R. A. Pielke, 1992:  Human Impacts on Weather and Climate. ASteR Press, 271pp.

Cotton, W. R., and R. A. Pielke, 1995:  Human Impacts on Weather and Climate, 1st edition, Cambridge University Press, 288pp.

Cotton, W. R., and R. A. Pielke, 2007:  Human Impacts on Weather and Climate, 2nd edition, Cambridge University Press, 308pp.

Cotton, W. R., R. R. McAnelly, G. Carrio, P. Mielke, and C. Hartzell, 2006:  Simulations of snowpack augmentation in the Colorado Rocky Mountains.  J. Weather Modification, 38, 58-65.

Dennis, A. S., 1980:  Weather Modification by Cloud Seeding.  Academic Press, 267pp.

Dennis A. S., and H. D. Orville, 1997: Comments on “A new look at tbe Israeli cloud seeding experiments.” J. Appl. Meteor., 36, 277-278

Gagin, A., 1986:  Evaluation of “static” and “dynamic” seeding concepts through analyses of Israeli II experiment and FACE-2 experiments.  In Rainfall Enhancement–A  Scientific Challenge, Meteor. Monogr., 43, Amer. Meteor. Soc., 63–70.

Gagin, A., and K. R. Gabriel, 1987:   Analysis of recording rain gauge data for the Israeli II experiment. Part I:  Effects of cloud seeding on the components of daily rainfall.  J. Climate Appl. Meteor.,  26,   913–926.

Gagin, A., and J. Neumann, 1974: Rain stimulation and cloud physics in Israel. Weather and Climate Modification, W. N. Hess, Ed., John Wiley and Sons,  454–494.

Gagin, A., and J. Neumann, 1981:  The second Israeli randomized cloud seeding experiment: evaluation of results.  J. Appl. Meteor., 20, 1301–1311.

Garstang, M., R. Bruintjes, R. Serafin, H. Oroville, B. Boe, W. R. Cotton, J, Warburton, 2005:  Weather Modification; Finding common ground. Bull. Amer. Meteor. Soc. 86, 647-655.

Givati, A., and Rosenfeld, D., 2005: Separation between cloud-seeding and air pollution effects. J. Appl. Meteor. Climate, 44, 1298-1314.    https://doi.org/10.1175/JAM2276.1

Grant, L. O., and R. D. Elliott, 1974:  The cloud seeding temperature window.  J. Appl. Meteor., 13, 355-363.

Grant, L. O., and A. M. Kahan, 1974:  Weather modification for augmenting orographic precipitation. Weather and Climate Modification, W. N. Hess, ed., John Wiley and Sons, 282-317.

Grant, L. O.,  and P. W. Mielke, Jr., 1967:  A randomized cloud seeding experiment at Climax, Colorado 1960-1965.  Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5, University of California Press, 115-131.

Hobbs, P. V., , andA. L. Rangno, 1979:  Comments on the Climax randomized cloud seeding experiments.   J. Appl. Meteor., 18, 1233-1237.

Isaac, G. A., J. W. Strapp, and R. S. Schemenauer, 1982: Summer cumulus cloud seeding experiments near Yellowknife and Thunder Bay, Canada. J. Appl. Meteor., 21, 1266-1285.

Kerr, R. A., 1982: Cloud seeding: one success in 35 years.Science,217,519–522.    https://doi.org/10.1126/science.217.4559.519

Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean.  J. Appl. Meteor., 35, 1511-1523.

https://doi.org/10.1175/1520-0450(1996)035%3C1511:TEODPC%3E2.0.CO;2

Levin, Z., A. Teller, E. Ganor, and Y. Yin, 2005: On the interaction of mineral dust, sea salt particles and clouds–A measurement and modeling study from the MEIDEX campaign.  J. Geosphys. Res.110, D20202, doi 10.1029/2005JD005810.

Mason, B. J., 1980:  A review of three long-term cloud-seeding experiments.  Meteor. Mag., 109, 335-344.

Mason, B. J.,, 1982:  Personal Reflections on 35 Years of Cloud Seeding.  Contemp. Phys., 23, 311-327.

Mielke, P. W., Jr., K. J. Berry, A. S. Dennis, P. L. Smith, J. R. Miller, Jr., B. A. Silverman, 1984: HIPLEX-1: Statistical evaluation. J. Appl. Clim. Meteor.23, 513-522.

Mielke, P. W., Jr., L. O. Grant, and C. F. Chappell, 1970:  Elevation and spatial variation effects of wintertime orographic cloud seeding.  J.  Appl. Meteor., 9, 476-488.  Corrigenda, 10,  842, 15, 801.

Mielke, P. W., Jr.,  L. O. Grant, and C. F. Chappell, 1971:  An independent replication of the Climax wintertime orographic cloud seeding experiment.  J. Appl. Meteor., 10, 1198-1212.

Mielke, P. W., Jr.,  G. W. Brier, L. O. Grant, G. J.  Mulvey, and P. N. Rosenweig, 1981:  A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments.  J. Appl. Meteor., 20, 643-659.

Mielke et al. 1976 does not appear in the references of this volume.

Mooney, M. L., and G. W. Lunn, 1969: The area of maximum effect resulting form the Lake Almanor randomized cloud seeding experiment.   J. Appl. Meteor., 8, 68-74.

National Research Council-National Academy of Sciences, 1973:  Weather and Climate Modification: Progress and Problems, T. F. Malone, Ed., Government Printing Office, Washington, D. C., 258 pp.

National Research Council, 2003: Critical Issues in Weather Modification Research. National Academy Press, 123 pp.

Rangno, A L., and P. V. Hobbs, 1987:  A re-evaluation of the Climax cloud seeding experiments using NOAA published data.  J. Climate Appl. Meteor., 26,  757-762.

Rangno, A L., and P. V. Hobbs, 1993:  Further analyses of the Climax cloud-seeding experiments.  J. Appl. Meteor., 32, 1837-1847.

Rangno, A L., and P. V. Hobbs, 1993 (sic):  A new look at the Israeli cloud seeding experiments.  J. Appl. Meteor., 34, 1169-1193.

Rangno, A L., and P. V. Hobbs, 1997a: Reply to Woodley.  J. Appl. Meteor., 36, 253.

Rangno, A L., and P. V. Hobbs, 1997b: Reply to Ben-Zvi.  J. Appl. Meteor., 36, 257-259.

Rangno, A L., and P. V. Hobbs, 1997c:  Reply to Rosenfeld.  J. Appl. Meteor., 36, 272-276.

Rangno, A L., and P. V. Hobbs, 1997d: Reply to Dennis and Orville.  J. Appl. Meteor., 36, 279.

Rangno, A. L., and P. V. Hobbs, 1997e:  Comprehensive Reply to Rosenfeld, Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25pp, with a forward by P. V. Hobbs.

Reynolds, D. W., 1988: A report on winter snowpack-augmentation.  Bull Amer. Meteor. Soc., 69, 1290-1300.

Reynolds, D. W., and A. S. Dennis, 1986:  A review of the Sierra cooperative project. Bull. Amer. Meteor. Soc.67, 513-523.

Rosenfeld, D., 1997:  Comment on “Reanalysis of the Israeli Cloud Seeding Experiments”, J. Appl. Meteor., 36, 260-271.

Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation.  A possible desertification feedback loop.  Proc. Nat. Acad. Sci.98, 5975-5980.

Ryan, B. F., and W. D. King, 1997:  A critical review of the cloud seeding experience in Australia.  Bull. Amer. Meteor. Soc.78, 239-254.

Sax, R. I., S. A. Changnon, L. O. Grant, W. F. Hitchfield, P. V. Hobbs, A. M. Kahan, and J. S. Simpson, 1975 :Weather modification:  where are we now and where are we going?  An editorial overview.  J. Appl. Meteor.14, 652–672.

Schemenauer, R. S., and A. A. Tsonis, 1985:  Comments on “physical interpretation of results from the HIPLEX-1 experiment.  J. Appl. Meteor.24, 1269-1274.

Silverman, B. A., 1986:  Static mode seeding of summer cumuli-a review.  Rainfall Enhancement–A  Scientific Challenge, Meteor. Monogr., 21, No. 43,  Amer. Meteor. Soc., 7–24.

Silverman, B. A.., 2001. A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteor. Soc., 82, 903-924.

Silverman, B. A., 2003: A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteor. Soc., 84, 1219-1230.

Smith, P. L., A. S. Dennis, B. A. Silverman, A. B. Super, E. W. Holroyd, W. A. Cooper, P. W. Mielke, K. J. Berry, H. D. Orville, and J. R. Miller, 1984:  HIPLEX-1:  Experimental design and response variables. J. Clim. Appl. Meteor.23, 497-512.

Tukey, J. W., Jones, L. V., and D. R. Brillinger, 1978a:  The Management of Weather Resources, Vol. I,  Proposals for a National Policy and Program.  Report of the Statistical Task Force to the Weather Modification Advisory Board, Government Printing Office. 118pp.

Tukey, J. W., D. R. Brillinger, and L. V. Jones, 1978b:  Report of the Statistical Task Force to the Weather Modification Advisory Board, Vol. II.  U. S. Government Printing Office, pE-3.

Simpson, J. S., 1979:  Comment on “Field experimentation in weather modification.” J. Amer. Statist. Assoc., 74, 95-97.

Super, A. B., 1986: Further exploratory analysis of the Bridger Range winter cloud seeding experiment. J. Appl. Meteor,25, 1926-1933.

Super, A. B., and B. A. Boe, 1988: Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky mountains.  Part III.  observations over the Grand Mesa, Colorado. J. Appl. Meteor., 27, 1166-1182.

Super, A. B., and J. A. Heimbach,1983:  Evaluation of the bridger range cloud seeding experiment using control gauges.  J. Appl. Meteor., 22, 1989-2011.

Super, A. B., and J. B. Heimbach, Jr., 1988:  Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky mountains.  Part II.  Observations over the Bridger Range mountains.  J. Appl. Meteor., 27, 1152-1165.

Super, A. B., B. A. Boe, and E. W. Holroyd, 1988:  Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky Mountains.  Part I.  Experimental design and instrumentation.  J. Appl. Meteor., 27, 1145-1151.

Woodley, W., 1997:  Comments on “A new look at the Israeli Randomized cloud seeding experiments.” J. Appl. Meteor., 36, 250-252.

Young, K. C., 1993:  Microphysical Processes in Clouds.  Oxford University Press, 335-336.

Part I: The Making of a Cloud Seeding Activist

A Personal Sojourn through a Murky Scientific Field Filled with Confirmation Bias, Vested Interests

and Skewed Literature

by

Art Rangno

Retiree, Research Scientist IV, Cloud and Aerosol Research Group, Atmospheric Sciences Department, University of Washington, Seattle.

Author Disclosure

I have worked on both sides of the cloud seeding fence, in research and in commercial seeding projects.

My main career job was as a non-faculty, staff meteorologist for almost 30 years (1976-2006) for the University of Washington’s Cloud and Aerosol Research Group (CARG), Atmospheric Sciences Department, with Prof. Peter V. Hobbs as director of CARG. I was part of the flight crew of the research aircraft we had, and directed many flights.

An overview/introduction to Peter Hobbs’ group’s work in cloud seeding, as it was presented at the American Meteorological Society’s Peter Hobbs Symposium Day in 2008 can be found here. Since Peter V. Hobbs has virtually no wikipedia presence, unlike his peers of comparable stature, he deserves at least a review of his group’s work (and our collaborations) in that domain, hence, if anyone says that anymore, the link.

After retiring from the University of Washington I was a consultant and part of the airborne crew for a National Center for Atmospheric Research (NCAR) test of cloud seeding in Saudi Arabia during the winter of 2006-07. That research involved some randomized seeding of Cumulus clouds.

I also worked in commercial cloud seeding programs in South Dakota (twice), India, in the Sierras, and for a CARG seeding program for the Cascade Mountains in the spring of the drought winter of 1976-77. I also worked for North American Weather Consultants, a provider of commercial cloud seeding services, as a summer hire in 1968 while a meteorology student at San Jose State College.

Confirmation bias? Yes, I have some. You can make supercooled, non-precipitating clouds precipitate (see ppt in Part II) for examples). But since those clouds are almost always shallow, the amount of precip that comes out is small. Is it economically viable? I don’t know. EOD.  (End of Discussion).

For a modicum of credibility regarding what you will read:

The director of the Cloud and Aerosol Research Group, Professor Peter V. Hobbs and I got a small monetary prize for our work in the cloud seeding arena. The award was adjudicated by experts with the United Nations’ World Meteorological Organization. Peter had done mainly constructive work in this domain before I arrived. My portion of this prize was really for tearing down accepted structures within the cloud seeding literature via reanalyses of prior cloud seeding experiments, once deemed by the scientific community as the best we had done in this field, along with other published commentaries.

————————————————

Thanks in advance to the two of you who actually read this whole thing! It’ll take a couple days. Its not a happy story about science, but rather one about how it sometimes fails to catch perverse literature. My hope is that my path through this field was “anomalous” or we’re in deep trouble.

Table of Contents

  1. Prologue
  2. Where it all started: How unsettling experiences regarding journal literature during a large Colorado cloud seeding experiment laid the groundwork for an eventual trip to Israel as a super skeptic
  3. The “documercial” movie about the huge Colorado River Basin Pilot cloud seeding experiment
  4. Scientific idealism begins to slip away in Durango
  5. 1974: I am the recipient of the Archie M. Kahan “Resident Skeptic” Award, my first “accolade” for exceptional skepticism of cloud seeding papers!
  6. The decay of idealism accelerates in Durango
  7. Conflict of interest on part of those chosen to evaluate the CRBPP 🙁
  8. The informational “black hole” during the CRBPP
  9. The 1973 NAS panel report on Climate and Weather Modification reaches Durango in 1974
  10. The final blow to idealism in Durango
  11. A regrettable personal media eruption in Durango that required an in person apology
  12. The apology and the Durango Herald’s article after effects
  13. 1979: my first conference presentation is going to be addressed by the Colorado experimenters before I give it
  14. 1983, a real no-no: a request for an investigation
  15. Tension highlight at Park City, UT, weather mod conference
  16. Intermission and “get a life!” note
  17. Not trusting the cloud seeding journal literature was a “fruitful perception”
  18. Peter V. Hobbs and his group’s work
  19. Anecdotes about my life outside of these volunteer efforts in case it doesn’t seem like I had one (the only fun part of this “blook”)

1. Prologue

This tome has four elements: my science work regarding the clouds and cloud seeding experiments in Israel; the earlier Colorado experiences that led to being an activist in this domain with a strong distrust of the cloud seeding literature; discussions about the difficulty of getting a review of Israeli cloud seeding published in the American Meteorological Society’s Bull. of the Amer. Meteor. Soc. (“BAMS”), historically a repository of cloud seeding reviews, and finally; at the very end, the manuscript itself recounting the “rise and fall” of cloud seeding in Israel as it now stands following peer-review, the two reviews themselves, and my responses to the comments of the reviewers and to BAMS. Yes, its a slog.

Perhaps, as long as this account is, it will be seen as just a diatribe, a useless expenditure of energy on a cause that has little merit except to the author, me. I fear that’s how this will be seen, but I post it anyway.

———————-

No scientist working in a conflicted science arena where there are strong and diverse opinions, whether its on the origin of dogs, the degree of climate change ahead, or here, about cloud seeding, will be surprised by anything in this account.

“Filled with skewed literature”? An interesting provocation in the title that I now flesh out. “One-sided citing”, or “selective citing” is a frequent occurrence in cloud seeding articles. One-sided citing is when peer-reviewed article only presents one side of an issue or findings when there are more. It can only result from reviews of manuscripts by “one-sided reviewers” or ones ignorant of the body of literature of the subject they are passing judgement on in their review. It should never happen in honest, thoroughly screened-for-publication literature.

How often does one-sided citing occur?

A survey of cloud seeding literature through 2018 (article in preparation) found that 38 of 90 articles in AMS journals and in the Journal of Weather Modification Association’s peer-reviewed segment that concern two sets of once highly regarded cloud seeding experiments only cited the successful phase a year or more after those experiments had been discredited in the literature. The experiments were conducted in Colorado and Israel.

The number of instances that authors and co-authors signed on to articles that told only one side of the story was over 100 representing more than two dozen institutions from universities, to private organizations, certified consultants, and commercial seeding providers.

The institutional “winners” of one-sided citing?

Colorado State University, South Dakota School of Mines and Technology, and the Bureau of Reclamation, each having more than ten one-sided “events1.” These results tell you, not surprisingly, that institutions who have, or had, concentrated programs in cloud seeding as these did are the ones most likely ones to practice one-sided citing; omitting papers they don’t like, but should cite for their journal readers to balance the view of cloud seeding they presented.

What motive would there be for authors to only present the successful results of cloud seeding experiments that were overturned later? There are several possible answers some of which were addressed by Ben-Yehuda and Oliver-Lummerman (2017)1: “…such deceptions are, “…a deliberate attempt to create a false reality, persuade audiences that these realities are valid, and enjoy the benefits that accompany scientific revelations, whether those of prestige, money, reputation, or power….”

[1] Ben-Yehuda and Oliver-Lumerman’s book should be required reading for the authors of one-sided citing.

Foremost is to mislead journal readers by citing a success (that was later overturned, hoping that their readers don’t find out about it). This leads the reader to believe that cloud seeding has a more successful history than it really does, the probable goal of the authors. I deem this tantamount to citing Fleishmann and Pons (1989, J. Electroanalytical Chem.) in support of “cold fusion”, without citing the followup studies that showed their findings were bogus. What’s the difference here?

Added to this primary reason for one-sided citing would likely be: ignorance of the literature on the part of authors; authors who have grudges against scientists that have injured their home institution, or their friends’ work; and authors who don’t wish to cite scientists whose work threatens their own livelihood in cloud seeding.

Cloud seeding literature with only one side of the story presented can be considered, “skewed.” It should be considered a form of scientific misconduct or really, fraud, in my opinion. BAMS leadership disagrees with this strong position, stating that its too difficult to determine one-sided citing in declining a proposed essay on “one-sided citing” (“Should it be considered a form of misconduct?)

I disagree. Its rather easy to determine one-sided citing. The numbers above indicate an awful lot of misleading literature is reaching the journals, something that publishers/editors of journals don’t want to hear about. Ask Stewart and Feder and their experiences with Naturein getting their 1987 article, “The Integrity of the Scientific Literature” published.

Moreover, one-sided citing damages authors like myself (I am frequently a “victim”) who lose citations they should reasonably have, and thus one’s impact in his field as measured by citation metrics is reduced. Surprisingly, one-sided publications have originated from such well-regarded institutions as the National Center for Atmospheric Research, the Hebrew University of Jerusalem, and Colorado State University, among many others that could be named, thus compromising their integrity as reliable sources of information.

That so many occurrences of one-sided citing reach the peer-reviewed literature points to a flawed peer-reviewed system, one populated by “one-sided reviewers” and/or ones ignorant of the literature they are supposed to know about in the role of a reviewer.

—————————

My whole cloud seeding story, more or less, is about these kinds of lapses due to one-sidedness; scientists presenting only part of the actual story, as happened in Israel regarding a key experiment, again pointing to a weak peer-review foundation in journals.

Moreover, this “Readers Digest Condensed Book” is only a partial (!) autobio and should be considered one in development. I know changes/additions will be made over time as comments come in… I’ve tried to constrain myself for the time being to just those important-to-me science highlights/”traumas”/epiphanies that I experienced in this realm rather than present EVERY detail of my experiences in this field (though it will surely seem like I am discussing every detail).

This is also a story, too, by a person who only wanted to be a weather forecaster ever since he was a little kid, but ends up working in and de-constructing cloud seeding experiments, the latter almost exclusively on his own time due to an outsized reaction to misleading literature.

I joined the University of Washington in 1976, btw, long after my disillusionment with the cloud seeding literature was underway. With Prof. Peter Hobbs support at the University of Washington when I brought in drafts concerning cloud seeding, I had a strong platform from which to rectify misleading and ersatz cloud seeding claims. I don’t believe another faculty member at the U-Dub would have taken the interest that Peter did in cleaning up my drafts. Thank you, Peter Hobbs.

In fact, my distrust of the cloud seeding literature, developed in the early 1970s, was so great that I hopped a plane to Israel during the winter of 1986 relatively sure the published cloud reports that supported rain increases in cloud seeding experiments were not slightly, but grossly in error. And someone needed to do something about it!

Most of this “blook” will be about this chapter of my life because it seems so characteristic of the compromised literature in this field that somehow seems to escape the attention of reviewers, and for those who report in this field, demonstrates the powerful seductive forces that the thought of making it rain has on otherwise good scientists. Nobel laureate, Irving Langmuir, comes to mind.

—————————-

1An author or authors on a one-sided article are each counted as an “event.” A single author can comprise several “events” if he repeatedly “one-sides” the issue, and a single article that “one sides” with several authors can be several “events.” It was observed that several authors repeatedly one-sided their cloud seeding articles.

————————-

For a comprehensive, informative, and entertaining read about early cloud seeding experimenters, crackpots, sincere, but misguided characters, and outright footpads in this domain read, “Fixing the Sky: The Checkered History of Weather and Climate Control” by Prof. James R. Fleming. I highly recommend it. (Coincidentally, James R. Fleming was a crew member of Peter Hobbs’ research group when I was hired in 1976, before he became the illustrious Prof. Fleming). You will read about Nobel Laureate, Irving Langmuir, in his book and how he became obsessed with cloud seeding effects and his critical faculties got diminished. The “Langmuirs” in this field persist to this day, willing to throw up specious arguments to recoup lost cloud seeding efforts, or create ersatz publications “proving” an increase in precipitation due to seeding had occurred. And they’re still leaking articles like that into the peer-reviewed literature due to inadequate peer-review.

———————————

The experiences described here also deal with a “checkered history of cloud seeding,” but one that emanates from academic settings in the modern era in form of peer-reviewed literature. One will be able to confidently conclude from my account that putting on an academic robe did not end the kind of cloud seeding shenanigans described by Prof. Fleming, though they are far more subtle, sophisticated and crafty. So “crafty” has been such literature, it has persuaded national panels of our best scientists (yes, and consensuses have been formed) to declare that what were really ersatz cloud seeding successes, true and valid in several cases. Namely, bogus papers have misled our entire scientific community!

Were the cloud seeding experimenters responsible for such acts in the modern literature just misguided, deluded but sincere people?

Or were they “chefs” that “cooked and trimmed” results to present their journal readers with ersatz successes that they benefitted from? You’ll have to decide. The evidence is clear in one case.

This, too, is written as I near the “end of my own road” and thinking that the events I experienced might be useful for others to know about and, especially, to be vigilant about.

Since its a story with dark elements, it’s also one where the scientific community (like doctors who loath testifying against malfeasant doctors), has tended to “circle the wagons” in misguided efforts to protect the reputation of science and scientists rather than being concerned with the “victims” of scientific misconduct/fraud. I am treading in this world now with in a manuscript submission to the Bull. Amer. Meteor. Soc. (BAMS) and the American Meteorological Society, discussed in considerable detail later.

Having never been a faculty member, only a staff person at the University of Washington, I suspect that it is easier for me than for authors like Prof. Fleming to address malfeasance and delusion as seen in the peer-reviewed literature by well-credentialed faculty members; “the club,” as it were.

—————————-

The organization of this piece is somewhat suspect. Its not my forte, as Pester Hobbs would know. It will jump around a bit; you will able to as well via “jump links” in the Table of Contents. Discussions about Israel’s clouds, cloud seeding, and the battle to get my review that published has a light gray background for some sorting of topics!

The references to technical literature mentioned colloquially here, are mainly in the submitted manuscript itself, which is found at the end of this piece, and on my “Publications” blog page, linked to later. I didn’t want to overwhelm non-technical readers with numerous inserts of citations. The “Rise and Fall of Cloud Seeding in Israel” manuscript that I will discuss relative to BAMS, consists of a distillation of more than 700 pages of peer-reviewed journal literature scattered among various journals and conference preprints. Its an account that has not been told before, and needs to be heard by a wide audience because of the lessons contained in it.

I start with the Israeli experiences before I tell you how I got to this degree of skepticism from experiences in Colorado, the second phase of this “blogzilla”…

2.  Durango, Colorado: Where it all began so long ago

How an idealistic view of science decayed into cynicism-followed-by- activism during a large randomized cloud seeding experiment in Colorado, eventually leading to a trip to Israel to evaluate their clouds

This section is kind of a slog about my Colorado experiences….but, I wanted to hit a FEW highlights of what was an epiphany about science for a rather naive person just out of college, me, that occurred in Durango, Colorado. This was my very first job as a weather forecasting meteorologist after graduating from San Jose State College.

(Skip if busy….though if you do, you will miss some personal ridicule, a movie, accolades, a possibly libelous newspaper headline caused by me, and details of a monetary science prize from the United Nation’s World Meteorological Organization that me and Peter Hobbs received for our work in weather modification. Yes, in 2005 I became, “Prize-winning meteorologist”, Art Rangno… 🙂

It is sad for me to have to point out something about the above “prize”, however. Like my HS and college baseball career, (all 2nd team this; all 2nd team that), the prize described above was really a consolation one, to insert a truth-in-packaging note. Other workers got lots more than we did that year. On the other hand, 32,000 Chinese weather modification workers got the SAME amount as Peter and I got that year; hah, less than a US dollar each!

OK, back to serious text…

…that Durango job was a dream come true for me, since I only wanted to be a weather forecaster since I was a little kid (even, somehow, forecasted weather for my 5th grade class–had an aneroid barometer in the “cloak room”). And there I was in the beautiful little town of Durango, Colorado, right out of college, forecasting weather for an important scientific experiment! My life could not have been better!

How I got to the point where I would be so skeptical of peer-reviewed cloud seeding literature that I would travel thousands of miles in question of cloud reports from the world’s leading cloud seeding scientist, however, began here during the huge Bureau of Reclamation randomized cloud seeding experiment called the Colorado River Basin Pilot Project (CRBPP). Read on.

3.  The movie explaining the Colorado experiment; a tribute to its size and importance

To depart for a second, it was a project so huge that it had its own movie, the cloud seeding “documercial,” Mountain Skywater, with a soundtrack by a local Durango artist, Clarence “Gatemouth” Brown!

Departing even further from serious text, it is with extreme modesty that I point out that I was the STAR of this 28 minute movie; I never dreamed that I would be a STAR in a movie (!), but there I am, as was declared by the Commissioner of Reclamation in those days, Ellis Armstrong. He attended the 1972 release of the film in Durango and gave me an autographed photo of several of us with him in which he proclaimed on it that I was the STAR. I only speak maybe two sentences in the whole thing! It was a pretty humorous take. I do cite it in my filmography, however. 🙂

Watching this movie you will get a sense of that cloud seeding era and how it was thought that a cloud seeding success in this randomized experiment was going to be a slam dunk in the San Juan mountains around Durango. There wasn’t a lot of questioning in those days about the work that this massive project was based on; namely, several stunning randomized experiments conducted and reported by Colorado State University (CSU) scientists in the late 1960s–contracts were being signed in 1968 for the CRBPP work about when the Climax II experiment was only about half completed! (And that, my friends, was a gigantic goof, as you will read.)

Also from the movie you will get a sense of the CRBPP’s scope and how well-planned it was overall. The precip measurements were made by those who didn’t know what the experiment day call was, seeded or not seeded. It doesn’t get better than that, and the BuRec deserves some mighty big accolades for that; trying to do it right. They were so confident, too, that they said that in spite of randomization (in which only half the days are seeded), that the CRBPP would produce an extra 250,000 acre-feet of water from the target watersheds.

Also in “doing it right”, and before the CRBPP began, the BuRec proclaimed in its PR literature that they would hire an independent statistical group to evaluate the results of this mega-experiment. It doesn’t get better than that, either. It was a display of confidence about the outcome of the experiment.

Aside: For the other seeding operators out there whose films you might see, this admonishment: “Randomize, baby, randomize”. Prove your claims the right way. Also, to seeding funders: employ independent panels to evaluate what you’ve been getting from commercial seeding as the Israeli’s bravely did.

————————-

4.  Scientific idealism begins to slip away in Durango

However, during the CRBPP I lived through journal peer-reviewed literature (J. Appl. Meteor.) that many of us knew was bogus but no one challenged. I, too, participated in a “Code of Silence” that kept our outside peers in the dark about important discrepancies that were being discovered in the CSU cloud and cloud seeding hypotheses during the CRBPP. These discrepancies turned out to cause the undoing of an otherwise well-planned experiment by the Bureau of Reclamation’s Atmospheric Water Resources Management Division, as it was called then (just “BuRec” in this piece). “Management” of atmospheric water was a word that also spoke to overconfidence.

At the same time, while in awe of the BuRec’s planning, it was strange to me that the personnel with them were immune from learning from those of us in the field about problems in their interpretations of the CRBPP’s results.

An example: BuRec personnel submitted a paper to a Florida conference in 1974, several years after the CRBPP had started, purporting that “carryover seeding” effects (those days when a control day followed a seeded day) had compromised the CRBPP because heavy snow often fell on that second “control” day. They then assumed that any heavier snow on the 2nd day MUST be due to seeding effects from leftover seeds that didn’t get blown away. They then grouped such carry over days, or portions of such days, into the actual days chosen for seeding and got better suggestions of increased snow due to seeding for the CRBPP overall.

However, no seeding effects were being detected in the first few years on single days that were seeded. Therefore, it was a crazy idea that somehow the seeding agent, silver iodide, turned into super-seeds after we turned off the seeding generators.

Of course, there was a natural explanation for this phenomenon when two days in a row were selected for experimentation.

I wrote a long letter in 1974 explaining why the findings in that BuRec preprint were bogus. When we randomly selected a second day in a row for experimentation, it was because an incoming storm was so large and heavy that it took two days for it to go by, or it was just beginning on the last hours of the first day. Not surprisingly, the heaviest part of the storm was on the second day, and usually early on.

I showed the BuRec data that control days that followed a control day, the second control day also had heavy snow, especially in the early going just like they were inferring was due to inadvertent “carryover” seeding of a control day after a seeded day. You could claim in a similar way from my examples that not seeding on a control day caused heavy snow on a following control day; silly. I had much more argumentation as well.

My explanation fell on deaf ears.

I concluded my commentary to them in 1974 about their ersatz findings with a line they couldn’t refuse to act on: I said they needed a “Resident Skeptic” at their headquarters in Denver.

A couple of weeks later, the CRBPP Project Monitor from the BuRec, Mr. Bill Douglas, presented me in person with a framed, Dr. Archie M. Kahan “Certificate of Honorary Resident Skeptic Award.” The presentation, in which he read the words on the Certificate, got a lot of chuckles from our staff who gathered around to see it. Archie Kahan, whose signature appears in the lower right, was the head of that BuRec cloud seeding division.

5.  My Well-earned Resident Skeptic Award from Dr. Kahan and the BuRec

Here is that “Certificate”, one really meant, I thought anyway, to ridicule someone they didn’t take seriously. Well, there were some at the BuRec, like the late Olin Foehner, who did take me seriously. I was only trying to help, guys…. You’ll have to zoom in to read the text.

Note the upside down Bureau of Reclamation logo in the lower left hand corner. It was to be prophesy for the division that sent me this “award.” Due to various missteps, of which the CRBPP was one, and a wetter period of years in the later 1970s into the 1980s, interest in cloud seeding virtually disappeared and their office was shutdown.

6.  Decay of idealism accelerates in Durango

More disillusionment with the BuRec and journal literature came when their preprint about carry over effects in the CRBPP was published in 1975 in the peer-reviewed, J. Appl. Meteor. There was no mention of the synoptic situation that I had described that compromised their findings. To them, inadvertent contamination of CRBPP days was too good an argument to let go of to help boost the results for a failing 10 million dollar experiment. Nor did I comment on it; I had no experience in journal matters and it never occurred to me to do so.

7.  The choice of the evaluators of the CRBPP 🙁

Another decline in confidence about the science of the CRBPP occurred when the BuRec, instead of choosing an independent group to evaluate the CRBPP as they said they would do before the project started, hired a cloud seeding group to evaluate it! While the group they hired went under the company name of Aerometric, Inc., most of the team of evaluators were really from North American Weather Consultants, led by Robert D. Elliott, President of NAWC. NAWC was largely a commercial cloud seeding company with many seeding projects and at one point was seeding commercially so enthusiastically in Utah that it contaminated some control days of the CRBPP! “Aerometric-NAWC” was chosen as the evaluator when it was clear, after just two years of random decisions, that the CRBPP was NOT going to replicate the CSU seeding results.

Perhaps the BuRec needed a friendly bailout, someone to put a happy face on a science disaster. (Footnote: I had worked for NAWC as a summer hire in 1968 and loved it and the great people there. Tor Bergeron stopped by! Still, it wasn’t a good choice by the BuRec to have them evaluate whether cloud seeding worked.)

8.  The informational “black hole” during the CRBPP: important findings came in from the field but never went out to peers

In mid-stream of the CRBPP, the BuRec called a meeting in July 1973 to try to understand what was going wrong with it. Why wasn’t it going to replicate the CSU work? Mainly, it was due to a few critical CSU assumptions that were not supported by data, such as the 500 mb temperature being an index of cloud top temperatures, and therefore, as it had been assumed, a reliable index of seeding potential. After all, the CSU experiment seeding effects were stratified by 500 mb temperatures repeatedly in the published literature; they had no data on actual cloud tops. Neither of those parameters, 500 mb temperatures or cloud top temperatures, are reliable indicators of seeding potential.

Nor were there widespread non-precipitating, reasonably deep clouds ripe for seeding ahead of and behind periods of natural precipitation, clouds that CSU scientists had inferred existed because the claimed increases in snow they reported, were solely due to the greater duration of snowfall on seeded days. Seeding had no effect on natural precipitation they concluded.

No such thick, non-precipitating cloud was found to exist in the CRBPP. This was largely due to the fact that cloud tops during storms were almost always colder than -15°C in storm situations, and usually considerably colder. Those cold tops naturally produced substantial ice concentrations without being seeded. High natural ice concentrations in clouds pretty much decimates seeding potential.

In closing that 1973 meeting, consisting of a who’s who in weather modification from universities and companies around the country, the Chief of the BuRec’s cloud seeding division, Dr. Archie M. Kahan closed it by observing that the CSU physical hypotheses, “were not as strong as we had been led to believe.”

It was an understatement.

But these important findings presented at that BuRec conference remained husbanded with those at that meeting. The “Code of Silence” was in full operation. The discrepancies were not to be “outed” until 1979 in Hobbs and Rangno (J. Appl. Meteor.) and in my reanalysis of the CSU Wolf Creek Pass experiment that same year in that journal. (The former article was originally part of the draft manuscript I brought in to Prof. Hobbs, but he deemed it something that should be reported separately.)

9.  Another pivotal event in 1974

I remember how excited I was, too, when a National Academy of Sciences 1973 report, Climate and Weather Modification; Problems and Progress, came through the Durango office in 1974. The NAS Panel on Weather Modification (Malone et al.) stated that the CSU cloud seeding work had “demonstrated” cloud seeding efficacy on a “deterministic basis”.

What was exciting when I read that NAS report in 1974?

I knew by then that an assessment by our best scientists with the NAS, and that a scientific consensus on the CSU experiments, as we would say today, was wrong! It was interesting to me later that Peter V. Hobbs, for whom I was to work, was a co-author of that optimistic report concerning the CSU experiments.

10.  A final blow to idealism and of the credibility of the cloud seeding literature

The final straw, however, was a much-cited article in 1974 in the J. Appl. Meteor. titled, “The Cloud Seeding Temperature Window.” The two authors had used constant level pressure surfaces to index cloud top temperatures in several seeding projects to come up with a cloud top temperature window of -10° to -25°C for successful cloud seeding. This temperature range was thought to characterize clouds with tops this cold that were deficient in ice particles, but would have supercooled liquid water in them that could be tapped by cloud seeding. It turned out to be a too optimistic a temperature range as later research showed.

Moreover, the lead author of this article had been told by three different people on separate occasions in my presence not to use a constant pressure level as an index of cloud tops in the Rockies. Nature does not constrain cloud tops so that they can be indexed by a constant pressure level temperature in the atmosphere.

The other author of “The Cloud Seeding Temperature Window” was in the midst of evaluating the storm day rawinsondes of the CRBPP; he was the leader of the Aerometric-NAWC evaluations team chosen by the BuRec. He absolutely knew that stratifications by a constant pressure level was not a viable way to index cloud tops from our data. When I asked that 2nd author the next time he came through the Durango office about that article, “How could you write that?” He simply replied, sheepishly it seemed to me, that he had just, “gone along with” the lead author.

So that was it.

I never again trusted the cloud seeding published literature. Cynicism 1, Idealism, nil. It didn’t matter, either, how highly regarded the literature was. It still might be inaccurate, corrupt, I thought. I often wondered, too, why that “Window” article was cited so much. I presumed it must be by readers that did not know much about synoptic weather and cloud top fluctuations.

11.  A regrettable personal media eruption in late 1975 that required an apology in person at CSU

I remained quiet until the CRBPP experiment ended in 1975, which also allowed me to retain my great job in the nice little town of Durango, Colorado–ah, the plight of whistleblowers……

But then I erupted in November 1975 after the CRBPP ended when it was safe and I had no job. 🙂 Here’s that whistleblowing eruption as seen in the Durango Herald, one that I feel I have to disclose in this “blook” to give an idea of my potential biases:

You will notice that I referred to “Watergate” in the Herald headline. As I left the Durango Herald office with the reporter, Mike McRae, I muttered a mistake. I said, “if what I have begun to work on turns out, it could be the Watergate of meteorology”, meaning it would make a big splash. It was a poor, if current and accessible metaphor, but it implied wrongdoing on the part of CSU scientists. I was away when the article came out and was devastated to see what Mike had written after a careful 1-2 h recorded interview in his office. He had promised to let me examine the article before it came out, but called the evening before I left and said he wasn’t able to do that, adding, “trust me.”

I left the next day for Fresno, California. I got that Durango Herald issue about a week after it came out while I was there working briefly for Tom Henderson, and Atmospherics Inc.

After I returned to Durango from Fresno, I sped off to CSU to apologize in person for my lapse to the leader of the CSU experiments, Professor Lewis O. Grant. I had also submitted a “retraction” to the Herald clarifying what I meant. I did see that reporter Mike in the Durango supermarket, and, after I only shook my head at him, he said, “Never trust a newspaper reporter.”

Q. E. D.

But Mike’s article in which I stated I was going to reanalyze ALL of the CSU prior experiments, as you will read, was to have a profound effect that neither of us could have imagined at the time.

12.  The apology and the after effects of the 1975 Durango Herald article

I was able to meet with Professor Lewis O. Grant, the leader of the CSU experiments in his CSU office as soon as I got there, . I groveled and apologized for my possibly libelous newspaper gaffe. He was real nice about it, actually. And, moreover, even when I said I still questioned his seeding experiments and asked for data, like the list of random decisions, he did not hesitate. He was an idealist; questioning was a part of science and he understood that.

Professor Grant’s attitude was not shared by the leader of the experiments in Israel, I am sad to say as Sir John Mason’s letter illustrated.

I kept Professor Grant apprised of my work from Durango as I went along with it as I said I would. As the Wolf Creek Pass experiment began to fall apart in my reanalysis, he even wrote that I had found something important. He was a true scientist.

I also learned from Professor Grant’s graduate student, Owen Rhea, who had started out as the CRBPP’s lead forecaster in 1970 and, along with Paul Willis, had hired me, that the Durango Herald article got back to the National Science Foundation who asked of CSU, “What’s going on?”

According to Owen, due to that Durango Herald article in which I was claiming that I myself would reanalyze ALL of their work, CSU scientists began reassessing their Climax experiments at that time. Those, too, eventually fell apart “upon further review”; their own. Its always best if you find your own problems and report them first before someone else does.

First, in 1978, the earlier claimed evidence of inadvertent downwind increased snow due to seeding at Climax, was found to be due to a synoptic (weather pattern) bias on seeded days. Gone.

Then, in October 1979, at a joint conference of weather modification and statistics at Banff, Canada, Owen Rhea, Professor Grant’s graduate student, verbally withdrew the claims that seeding had increased snowfall in the Climax experiments. Paul Mielke, Jr., the lead CSU statistician, had already done this in a short commentary in the J. Amer. Stat. Assoc. in March of that year, also noting that the stratifications could not have partitioned seeding potential. Climax I and II, gone.

A lucky draw on seeded days had occurred in both Climax experiments; pretty remarkable, though Climax II was to receive some “help” as it turned out, exposed in later independent reanalysis in 1987 by yours truly, with Hobbs.

At that same conference at Banff in 1979, I presented my now published, “Reanalysis of the Wolf Creek Pass cloud seeding experiment” in the May 1979 issue of the J. App. Meteor.) It, too, like the Climax experiments, was the result of a lucky draw and favorable selection of controls by the experimenters, but ones chosen after the experiments had begun, a no-no for experiments because it opens to door to confirmation bias and cherry-picking.

That was my first presentation at a conference. The year before, I had played “center microphone” for a similar conference in Issaquah, Washington. That is, I ran around with a microphone for attendees that had questions for speakers. I was a real “gopher” just the year before.

All in all, the Banff conference was a devastating one for those involved in cloud seeding at CSU, and for those organizations such as the BuRec that had placed such big bets on the CSU experimenters’ original reports.

13.  Pre-1979 Banff conference palpitations and why; the human part of being a science worker in a conflicted environment

The Banff 1979 program that I was going to present in was published in the Bull. Amer. Soc. in May 1979. I was shocked to see that it indicated that CSU faculty would address my paper before I gave it. Thankfully this did not happen. I was an amateur compared to the faculty at CSU, and I was sure all that time before the October Banff conference after seeing the program in May, that my work would be cut to pieces and I would get up red-faced with nothing to say. I had palpitations that whole summer of this nightmare scene, and even redid my paper. Perhaps I had made egregious errors; I was the one that was biased and couldn’t see it.

The evening before my talk in October, I ran into Professor Grant, and he informed me at that time that they were not going to address my work after all. Whew. I had even considered not going; the fear of humiliation was that bad!

Paul Mielke, Jr., also came by, and he simply said, “We screwed up.” I admired him for that and his courageous 1979 article in the J. Amer. Stat. Assoc. In essence, in that article, he had stated that there was no real basis for the 10 million dollar CRBPP the BuRec had signed up for. Can you imagine? The BuRec REALLY did need a “Resident Skeptic!”

The 1979 Banff talk went fine, even got an accolade and a laugh, and I ended by saying, “Who wouldn’t have believed all this evidence was NOT due to cloud seeding?”, trying to put the best face on the CSU seeding collapse that evening. It was an amazing trifecta of indications that seeding had increased snow that CSU scientists had encountered and embraced, but were now gone.

But that was not to last.

CSU scientists began looking again at their Climax experiments and began publishing claims that they had resuscitated valid increases in snow in those experiments in 1981, though they were smaller ones, stratifying the data again by 500 mb temperatures asserting or implying that they had something to do with cloud tops and cloud seeding potential. It was quite a discouraging blow if you care about science.

Neither I, nor Owen Rhea of CSU, could let such claims go unchallenged and we each reanalyzed the new Climax experiment reports, both of us finding a second time in the following years that those claims of increased snow due to seeding by the experimenters were ersatz. There’s much more on this, but will end this discussion here for some hint of brevity.

And, so, while the story today is centered on my work in Israel, the full ppt “book” has a lot of backfill to my experiences in Durango like the ones above, experiences that caused me to distrust any publication regarding a cloud seeding success without extreme scrutiny, the kind that reviewers of journal manuscripts mostly don’t have the time or inclination for.

14.  1983, a real no-no: a request for an independent panel to investigate the reporting of the Climax I randomized experiment

This was a painful chapter, but in trying to be totally candid, it has to come out. There are likely still those out there that know about it, though, as I wrote in my request for this to the Amer. Meteor. Soc., I hoped it would remain completely behind the scenes. It did not. Prof. Grant himself later told an audience that he was under investigation.

Here’s why: CSU statistician, Prof. Paul Mielke in 1979 J. Amer. Stat. Assoc., while withdrawing the claims that the Climax experiments had increased snowfall, observed that both experiments, Climax I and II, had experienced favorable draws that created the impression that snow had been increased on seeded days. It was a courageous post. Here’s what he wrote:

Very recently, in connection with design studies for a possible experiment of this type in central and northern Colorado mountains, station-by-station precipitation analyses of the Climax I and II experimental units were made for all available hourly stations in Colorado. The resulting maps of seeded to non-seeded mean precipitation amount ratios and non-parametric teststatistic values plotted over the western half of Colorado indicated (for meteorological partitions such as warm 500 mb temperatures) that the Climax experimental results were part of a region-wide pattern rather than an isolated anomaly produced by seeding. In particular, these recent results cast serious doubts on consistency of apparent effects associated with replicated five-year winter periods of the Climax I and Cllimax II experiments.

Later, however, while looking for something else, I ran into this statement at the very end of the article by Mielke et al. (1970, J. Appl. Meteor.), an article accepted for publication on June 30, 1969:

“In an attempt to better define the area extent of the differences between the seeded days and non-seeded days beyond the boundary of the experimental network, available data from all Weather Bureau stations in Western Colorado are currently being investigated.”

Mid-1969 was time that large contracts were being formulated by the BuRec and signed by contractors involved with the CRBPP. One, at least, had already been signed in 1968, the one with CSU scientists for a CRBPP design document, whose interim document was released in October 1969.

What to do after I ran into what seemed to be a “smoking gun”?

It seemed inappropriate to me to have the CSU scientists answer such a profound question on which millions of dollars might depend on the answer: “What happened to the 1969 study that was “underway”? So, I stewed for quite awhile on this seeming “smoking gun.”

Millions of dollars would have been saved, of course, if the CSU scientists had discovered/reported in 1969 the evidence that Climax I had been compromised by a “lucky draw.” It can be assumed that the BuRec would have backed off their plans for the randomization of the CRBPP; perhaps had gone into a research mode with ground and air measurements, or canceled the project altogether to ruminate on what really happened in Climax I. Note: it was well known at E. G. & G., Inc, that CSU scientists opposed randomization of the CRBPP on the basis that, “it’s already been done” (in their own experiments).

Ultimately, in 1983, following a reaction to the CSU scientists’ responses to my friend, Owen Rhea’s reanalysis of the Climax II experiment, I wrote up my request and sent it in to several organizations including CSU, the AMS and NAS. The AMS didn’t know how to go about this (D. Landrigan, personal communication) and I got no response from the NAS.

There was, however, an internal investigation by CSU faculty panel that found no problems in the reporting of the Climax I experiment. I also received a threat of legal action by then Acting Colorado State University President, Robert Phemister if I persisted in my calls for an investigation of the CSU reporting. I didn’t. I still wish that there had been a wider look besides that by CSU faculty, one of whom was a co-author of a seeding paper.

I really hated to do it, knowing the fallout. But, what would you have done if you found the 1969 Mielke et al. “smoking gun?” I just didn’t think they should answer a question with millions of dollars riding on the answer.

I let this issue go downstream, but you can only imagine how CSU and their sympathizers that found out about my unprecedented action might have felt about me. I had asked for an investigation of the most beloved persons in all of weather modification, Lewis O. Grant and Paul Mielke, Jr., both of whom I actually liked as people!

Peter Hobbs, when he found out, was livid; he was not involved because he was on sabbatical in Germany. No one was involved but me. But, I got a raise the next year, 1984. ??

I presented a paper at the Park City, UT, weather mod conference in 1984 with all those present from CSU who knew what I had done. Gads, how did I make it through that one! The tension was so thick. My paper, one that later became part of an AMS Monograph with the other presentations, was titled (I had been assigned this title), “How good are our conceptual models of orographic cloud seeding?”

—————————–

15.  Tension highlight at Park City

It was during this conference that Prof. A.G. from Israel took me aside to sternly lecture me about how wrong I was about the clouds of Israel (from my 1983 rejected article by the J. Appl. Meteor. that asserted they weren’t being described correctly. It was also at that time that he informed me that he had been a reviewer, one of course, that helped reject that paper. His lecture had no effect whatsoever on what I thought about those clouds, why I hopped a plane to Israel two years later.

————————–

If you have read our papers on the Climax experiments, you will know that there was suggestions of tampering with the key NOAA target gauge precipitation data in Climax II (Rangno and Hobbs, 1987, 1995, J. Appl. Meteor.) The values used by the CSU scientists in their analyses were not the ones that were published by NOAA for that gauge; the values that the experimenters used increased the supposed seeding effect, but modestly (4%). And there were many other discrepancies in the 500 mb temperature assignments of storms from those published by NOAA that also “helped” the Climax II experiment “replicate” Climax I.

In contrast, errors were negligible in Climax I; all the precipitation data were the same as in the NOAA publications, for example. Climax I was gifted by a lucky draw of storms with NW flow on seeded days, the direction from which Climax receives it greatest daily precipitation and the set of control stations chosen by the experimenters halfway through the experiment, the least. Climax II had no such luck. Check it out below:

Percentage of the total experimental seeding season precipitation at Climax I (a)and II (b ) for three wind direction categories using the winds at mountain top level 4 km ASL or 600 mb level, whichever was available in the NOAA publication, “Daily Series, Northern Hemisphere Data Tabulations, Radiosonde and Rawinsonde Checked Data.” The solid bar is for seeded days, and the cross hatched ones for control days. Climax receives its greatest average daily amounts in NW flow. (From an unpublished manuscript rejected by J. Appl. Meteor. in 1983.

To my knowledge, the results of the 1969 begun Mielke et al. investigation were not made known to the BuRec until Mielke’s 1979 J. Amer. Stat. Assoc.) comment.

———————————

Why would anyone do call for a behind the scenes investigation that would only have negative fall out for everyone involved? I felt I was representing those people outside the cloud seeding community who really paid for the CRBPP. That, too, was the way I felt about my trip to Israel. OK, I know you’re rolling your eyes now, but it was true, I really did think, “Someone has to do something about this!” If I was arrogant (“confidant” is a better word) it was because I thought I could do something given my particular cloud-centric background. I think a lot of “activists” think this way; that they can do something.

16.  Intermission and time for a “Get a life!” note

Following the above comments, it seems like an appropriate point for a reader to erupt with, “Get a life!” See the note at the very end of the science portions of thes piece if that’s what you might be thinking at this point, which is not an unreasonable thought at all. 🙂

I did have an outside life somehow. I was single during most of this time, too. There’s no way you could be married/have a partner, and be doing what I was driven to do. Playing baseball, doing some extracurricular forecasting on the radio and for the Washington Huskies comprised most of that outside life.

OK, enough intermission….

17.  A “fruitful perception”

Not trusting cloud seeding peer-reviewed literature, no matter how highly regarded it was, was a fruitful perception. I think you can see why by now!

Over the following twenty years after Durango I reanalyzed, with Prof. Peter Hobbs as my co-author on all but one article, no less than six peer-reviewed, journal published cloud seeding experiments. Not one was the success the original experimenters claimed it to be! PDFs of these reanalyses, and other commentaries on cloud seeding in the literature can be found here:

https://cloud-maven.com/publications-boring/

Important Footnote: To fill out my CV even further on the above page, I have even included my rejected papers and non-submitted reviews as well to make it look bigger than it really is. Of course, those latter items REALLY don’t count in official CVs except to ME. I am hoping to one day to have, as other scientists do, a subset of my papers published: “The Collected Rejected Papers of Arthur L. Rangno.” The volume would be quite thick.

All those published reanalyses and commentaries, and articles/reviews that weren’t accepted or not even submitted, was a vast amount of material I had created, and they were accomplished on my own initiative, my own time (except one, the Skagit reanalysis, was on Peter Hobbs’ time, but my initiative). That is, I worked on these kinds of things on my weekends, evenings, before work, after work at the office, etc. , on and on over years, probably amounting to thousands of volunteer hours to evaluate and “out” faulty cloud seeding claims and to get my views of the cloud seeding arena into print. I even drafted most of my own figures.

I had no funding, of course, for these, well…”altruistic” efforts, as I thought of them. I just felt I had the skills to expose faulty cloud seeding literature being a forecaster and a “cloud man.” I also felt I had a duty to do it since it was likely that no one else would.

To readers: anybody down here?

18. Peter V. Hobbs and his group’s work in cloud seeding


19. Life beyond science volunteering: some anecdotes, some humor…maybe

The almost fanatical activity described above can be also be seen as a “crackpot alert.” But, maybe a good one? Yes, and you might well be thinking, as noted, “get a life!”

Well, I did have some outside activities, like playing baseball in a hot semi-pro league called the Western International League, so there. Eight guys were signed off my team over the several years I played on it; one, Mike Kinunen, was pitching for the Twins the next (1980) summer and the guy that batted 3rd in front of me, made the last out of the 1980 college World Series in Omaha playing for the #5 Hawaii Rainbows (defeated by the Arizona Wildcats!) I was the oldest starting player in that league in those halcyon days of my late 30s. In case you don’t believe me:

In my last playing year, I was the recipient of the Jim Broulette “Mr. Hustle” Award in 1980. No, it wasn’t for being a great player, but rather for being an “inspirational” one, which is not as good as being given an award for being great (I had an off year..). FYI, this what I looked like during the era of ruining cloud seeding papers except I wasn’t wearing a baseball uniform when I was doing that.

In a further nostalgic sports report and waste of your time, after the WIL, I pitched batting practice for the Seattle Mariners, 1981-1983. An anecdote about that:

I showed up for a tryout at a workout they were having on the U of WA Husky baseball field in 1981 after the MLB strike had ended and, after pitching BP there, I got to be one of the regular Mariner BP pitchers in the Kingdome, an unpaid job, btw. You get tickets behind home plate. It was so much fun, but stressful. There was an uneasy quiet if you threw as many as three balls that weren’t smacked.

They released me at the end of 1983 because the “guys” were complaining that my ball had too much movement in BP; I was “cutting the ball”, giving it extra spin (private communication, Steve Gordon, backup catcher, 1983). (Unbelievable).

The Mariners of note in those days were Tom Paciorek, Dave Henderson, Bruce Bochte, Richie Zisk and Gaylord Perry, the latter who said my BP was “horrible” in 1983 after he joined the Mariners– he didn’t hit it so well. Of course, he was a washed up pitching buffoon in those days–what would he know about hitting? (Just kidding, Gaylord.) I did throw harder than normal BP pitchers and off or near the pitching rubber, just like I did for my WIL teammates who loved my BP. They wanted zip on the ball like real pitching and I thought the MLB players would, too. And they did, too, that’s why I got “hired” in the first place.

————————

Forecasting for the Washington Husky baseball and softball teams.

I was also the de facto weather forecaster for Washington Husky baseball and softball teams calling rain delays, tarp placements and removals and such beginning in the mid-90s. I had met the Husky baseball coach during my WIL experiences and began forecasting for softball during the 1996 NCAA regional tournament in Seattle which was impacted by numerous showers and even a thunderstorm.

The weather during these spring sports seasons is occasionally showery in Seattle, lots of Cumulonimbus clouds form on those kinds of days, rather than the easy to predict day-long rains from fronts. Radar was pretty useless in showery situations. Why? Because the lifetime of showers is short, and the Huskies could play in SOME rain, just not too hard. So, an incoming shower had to be evaluated by eyeball to assess whether it was dissipating or not; was it all ice or what, and would it rain hard enough to require a tarp and a rain delay? So that’s how I did it, almost completely by eyeballing showers, their movement and growth pattern and assessing their stages.

When the tarp was on the softball diamond during showery days, it was almost harder to call when it should be removed since it took about 45 min to get the game going again; the players had to warm up, besides taking the tarp off themselves. This meant predicting whether a shower would even form in that 45 min time frame, and if so, would it affect the game? The worst possible scenario was that you said to remove the tarp, everyone warmed up again, the crowd came back into the softball stadium, and then it rained hard right after that. It was a stressful volunteer job. Fortunately, that did not happen. I was lucky.

It sounds disconnected, but this was exactly the kind of skill I took to Israel in 1986.

———————————

Before the Husky forecasting era, I had been a forecaster on two different radio stations in Seattle, KUOW-FM (1987-1992), an NPR affiliate in which I came on during “Weekend Edition”, and on a local rock station, KZAM-FM, M-F, for about six months in 1982. For both stations I was doing very short-term forecasts for Seattle using the time of day, such as “no rain through 11 AM, then rain beginning between 11 AM and 2 PM”, etc. When I started these efforts, Seattle had no dedicated weather radar! Doppler weather radar became available only in 1992. In place of radar, you had to use upwind station reports, satellite imagery, know the “territory”, and eyeball the cloud situation along with knowing what the computer model predictions were, and then evaluate how the cloudscape, obs, and how the model predictions were meshing with what the sky was doing.

Perhaps, for sophomoric entertainment, you would like to hear one for KZAM-FM in 1982. In listening to this (sorry, its not real clear), we have to remember that, as the LA Times wrote in 1981, weather forecasting at that time was an era of “clowns and computers” as they headlined. You were expected to come up with some “schtick” if you were a media weather forecaster. And I was encouraged to do so by KZAM-FM. It got a little wild, as you will hear. To stay with the theme of “sports and weather”, I reprise my “sports-like” 1982 weather forecast on KZAM-FM, one that mentioned Gaylord Perry in context with a low pressure in the Gulf of Alaska with “moisture and rotation on it”, known for cheating by throwing spitballs. And damn him for criticizing my BP! It’s a little muffled, but you’ll get the idea. Remember I was forced to do this by the forecasting motif of the day….

OK, I am having more fun now as I remember those crazy days….I still worked at the U of WA cloud group full time during these efforts, too. Good grief, how did I manage all this?

Part II: The Clouds of Israel and Why I Went to Investigate Them

      1. The background for the trip to Israel: The British, among other groups, can’t get in to study the ripe-for-seeding clouds in Israel
      2. The British can’t get in: Sir John Mason’s letter
      3. Why I thought I could do something
      4. Story board concerning a trip to Israel to see their clouds
      5. About the clouds I was supposed to see in Israel
      6. 1983, an early jab at “faulty towers”; a paper that questioned the Israeli experimenters’ cloud reports is submitted and rejected
      7. About getting the 1986 cloud study published
      8. The best example of rapidly glaciating clouds I saw
      9. Why was the 1986 study submitted to a foreign journal?
  1.  

1.  The background for going to Israel in 1986: no one could get a research plane in to check out those ripe-for-seeding clouds described by the experimenters

By the early 1980s, the events in the journal literature I had experienced during the 1970s caused me never again to believe in a cloud seeding success prima facie no matter how highly regarded it was by national panels and individual experts, as the Israeli experiments were in those days. In Part I, I discussed what happened to me in Durango, a transformation from a pretty naive, idealistic person “going in”, to one that knew those experts alluded to above could be easily fooled and were more naive than I was starting out!  Just too much resting on the reporting a cloud seeding success; glory, funding, status, confirmation of a priori beliefs, for a “let the chips fall where they may” attitude.

The ripe-for-seeding clouds that I went to see in Israel were ones that the HUJ scientists described repeatedly in journals and in conference presentations. They were the foundation for the belief that seeding them had resulted in statistically-significant increases in rainfall that  reported in two, separate randomized cloud seeding experiments, Israel-1 and Israel-2. Those experimenters’ cloud reports explained to the scientific community WHY cloud seeding had worked in Israel and not elsewhere. These first two Israeli experiments were hailed by the scientific community, and in 1982 after the second experiment were described in Science magazine as the ONLY experiments in 35 years of seeding trials that had proven rain increases had been induced by cloud seeding.  (Yes, there was a dreaded scientific consensus that these experiments had proved cloud seeding.)

At the time I went to Israel in 1986, and some of the reason for going, was that no major outside research institution, curious about those Israeli clouds, had been able to get their research planes in to check them out. At least six attempts had been rebuffed (Prof. Gabor Vali, University of Wyoming, personal communication, 1986). The attached letter below from Sir John Mason, former head of the British Royal Society and author of, “The Physics of Clouds,” wrote to me about his attempt to get the British research aircraft into Israel and coordinate such a mission with the lead Israeli cloud seeding experimenter, Professor A. Gagin (hereafter, Prof. AG) of the HUJ. You will find it illuminating about why outside researchers couldn’t get in.

2.  British unable to get in

Why I thought I could do something

So, in going to Israel in 1986 and by then having ten years of experience under my belt in airborne cloud studies with the University of Washington’s Cloud and Aerosol Research Group (CARG), as a weather forecaster, as a former storm chaser (summer thunderstorms in the deserts of Southern California and Arizona, Hurricane Carla) and importantly, as a cloud photographer, I felt I could fill a vacuum left by those rebuffed airborne research missions. Peter Hobbs, the director of our group, put it this way: “No one’s been able to get a plane in there.” It was a very curious situation in itself.

3, Story board concerning my trip and its results

(Hit the expand button in the lower right hand corner for a full view.)

But Peter Hobbs also chided me before just before I went to Israel about my skepticism of the Israeli cloud reports; that I seemed to be indicating to him that I knew more about the clouds of Israel than those who studied them in their backyard. He also added that he thought I was “arrogant.” Wow. Peter, too, was still mad at me for resigning from his group just before a big project and raising a ruckus about it. Moreover, I had scrutinized the HUJ cloud reports in considerable detail, and had submitted a paper on the problems with them in 1983. I had a solid background for my assessment.

Why I resigned from a job I loved, is another long story (oh, not really; you know, it was the old “authorship/credit issue”). But it’s one that ends happily with a reconciliation a couple of years later, which doesn’t always happen! We both benefitted from that reconciliation. We needed each other.

My trip to Israel was self-funded and self-initiated. It may sound ludicrous, but I also felt that by going to Israel I was going to be able to do what those rebuffed airborne missions could not do; evaluate the clouds of Israel sans aircraft. I had flown in hundreds if not thousands of clouds using high-end instrumentation, and when you’re directing research flights as I did for the U of WA research group on studies of ice-in-clouds, mostly Cumulus and small Cumulonimbus ones, you visually assess clouds before going into them and then fly into them sampling the best parts and then see what your instruments have told you about them (concentrations of drops and ice particles, etc.). You get a real quantitative feel for how much ice they’re going to have in them by their external appearance.

So, by just visually assessing the Israeli clouds and estimating their thicknesses and top heights, I would know from my airborne work and background whether the reports about the ripe-for-seeding clouds were correct. Upon closer inspection, there were several odd aspects in the Israeli experimenters’ cloud reports.

Too, if I was right about the clouds of Israel, that they were starting to rain when they were relatively shallow (highly efficient in forming rain, as we would say), say, topping out at 3-4 km (roughly 10 kft to 14 kft) above sea level, the Israeli people might well be wasting millions of dollars over the years by trying to increase runoff into their primary fresh water source, the Sea of Galilee (aka, Lake Kinneret) by seeding unsuitable clouds. They had started a commercial-style program in 1975 after Israel-2, the second experiment, had been reported as a success in increasing rain.

During the first daylight hours of the first showery day I saw, shallow Cumulonimbus clouds full of ice were rolling in from the Mediterranean to Tel Aviv, ones that had been preceded by true drizzle and thick misty rain in Jerusalem the night before. I KNEW that soon that the cloud reports from the HUJ experimenters were grossly in error. Drizzle, btw, was not supposed to fall from Israeli clouds because they were too polluted. Drizzle, instead, meant they were ripe to produce ice at temperatures only a little below freezing due to having large cloud droplets capable of coalescing into bigger drops.

Of course, there were other experienced research flight scientists in cloud studies out there I am sure that could have done the same thing as I did. But, I was the one that went. (Spent a lotta money doing what I thought was an altruistic act, too.)

4.  About the clouds I was supposed to see in Israel

So, what are clouds that are plump with seeding potential supposed to be like? Just that; fat and pretty tall. The clouds that responded to seeding were reported to be those with radar-measured “modal” tops with heights at levels from balloon soundings that were between -12°C and -21°C with the major rain increases due to seeding in the lower half of that temperature range. These would be clouds rolling in off the Mediterranean that were about 3-5 km thick, topping out around 15,000 to 20, 000 feet or so above sea level. Such clouds were described as having a tough time raining, according to the experimenters at the HUJ. They either barely rained, or not even at all, until they were seeded. The effect of seeding in their statistical analyses of the Israeli experiments was that seeding had increased the duration of rain, not its intensity. This was a finding compatible with how the experimenters seeded and also, without direct evidence, led to the inference of deep clouds that didn’t rain until seeded, surrounded the taller ones that did. The experimenters had used just a little bit of seeding agent (silver iodide) released by a single aircraft flying long lines along the Israel coastline near cloud base in showery weather.

It all made sense. Mostly…unless you really got into the details of their reports, in which the devil resides. And I had done that by 1983. See below for a “detective meteorology” module in which the cloud reports of the HUJ experimenters are closely scrutinized and I concluded something was seriously wrong with those reports.

5.  1983:  A paper questioning the Israeli cloud reports is submitted and rejected: a call to action… eventually

In 1983, after plotting dozens of rawinsonde soundings when rain was falling at or fell within an hour of the launch time at sites at Bet Dagan, Israel, and at Beirut, Lebanon, (see first figure in ppt above) I came to the conclusion that the clouds of the eastern Mediterranean and in Israel were, shockingly, nothing like they were being described as by the HUJ experimenters at conferences and in their peer-reviewed papers. I also looked at their published cloud sampling reports and it was clear to me that the clouds that the experimenters had sampled were not representative of those that caused significant rain in Israel; they were too narrow, did not have enough ice particles in them; they did not sample the wide Cumulonimbus complexes that produce the rain for tens of minutes to more than an hour at a time during Israel’s showery winter weather, often marked by thunderstorms.

I submitted a manuscript in July 1983 to the J. Clim. Appl. Meteor. that questioned the experimenter cloud reports. It indicated that rain frequently fell from clouds with tops >-10°C which according to the experimenters’ reports, was never supposed to happen. It was rejected by three of the four reviewers. (Peter Hobbs, the leader of my group, was on sabbatical in Germany and was not happy I had submitted a journal paper without his purview!)

I was undaunted by the reviewers’ take and the rejection; I was pretty sure my findings were correct, which they were proved to be by aircraft measurements in the early 1990s. (Rejected authors, take heart! You may have something really good.)

The problem for reviewers of that 1983 submission?

How could the HUJ experimenters not know about what I was reporting if it was true?

The many rebuffed outside airborne attempts to study Israeli clouds, such as that by Sir John Mason mentioned above, suggested otherwise. I was to fester over this rejection for the next couple of years before deciding to go to Israel and see those clouds for myself, becoming a “cloud seeding chaser”, maybe the first!

6.  About the publication of the 1986 cloud study

Peter Hobbs called Prof. AG a few months before he passed in 1987 to let him know that my article on the clouds of Israel, derived from my 1986 cloud investigation, was going to be published in the Quarterly Journal of the Royal Meteorological Society. The title? “Rain from clouds with tops warmer than -10°C in Israel,” something that the lead experimenter had maintained for many years never happened. In fact, such rain was quite common, as the Israeli experiments Chief Forecaster, Mr. Karl Rosner, states in a 1986 letter to me (posted below), and as I also saw in 1986 during my investigation. Prof. AG passed three months later. Undoubtedly, the appearance of my paper was going to bring many questions and stress for Prof. AG.

7.  The best example of rapid glaciation of shallow cumuliform clouds that I saw in Israel

Shallow Cumulus congestus transitioning to modest Cumulonimbus clouds rolled in across the coast north of Tel Aviv on January 15, 1986. This day’s scene was especially good because of the lack, mostly, of intervening clouds toward a small line of Cumulus and Cumulonimbus clouds. The first shot was taken at 1556 LST and the second shot just four minutes later, 1600 LST. The rising turret peaking between clouds in the first shot had transitioned to ice in that time, taking its possible load of momentary supercooled water with it! This kind of speed occurred repeatedly on this day, and other days when I was there.

Recall that lead of the Israeli cloud seeding program, Prof. AG had asserted in his papers that ice particle concentrations in Israeli clouds did not increase with time. (!) Author’s comment: Not possible.

I estimated the tops of the clouds at 4 km ASL and the temperature at -14°C +3°C based on rawinsonde data. Cloud bases were a relatively warm 10-11°C. This estimate was later verified by radar by Rosenfeld (1997, J. Appl. Meteor.); our full discussion of these photos, including the error in time by Rosenfeld (1997), is found here along with replies to his other comments:

Copies of these slides, with the times above annotated on them, were sent in 1986 to Dr. Stan Mossop, CSIRO, Australia, Prof. Roscoe R. Braham, Jr., North Carolina State University, and Prof. Gabor Vali, University of Wyoming.

8.  Why was my 1986 Israel cloud study submitted to a foreign journal, the British Quarterly Journal of the Royal Meteorological Society?

Ans.: Neither Professor Peter Hobbs nor myself believed that my 1987 manuscript could be published in journals under the auspices of the American Meteorological Society (AMS). So, we went “foreign.”

I believe that this also relates to the problem I have today with the current “Rise and Fall” manuscript submitted to the BAMS under its current leadership. Perhaps the BAMS editors and its leadership feel they are “protecting” Israel, its science, and the HUJ by rejecting a manuscript about faulty Israeli science with elements of misconduct?

My rejected manuscript in 1983 had already suggested that the AMS audience and its reviewers were not ready to hear what I was going to report, and once again I was going to report that the clouds were markedly different than was being described by the HUJ seeding researchers.

The problem with submitting to the AMS, again? Too many American scientists had heard repeatedly in conference presentations or read in peer-reviewed journals about Israeli clouds plump with seeding potential and low in ice content to low cloud top temperatures (to -21°C) as they were being described by the lead experimenter.

In 1983, and again in the 1987 submitted manuscript, I was reporting that the clouds of Israel had little seeding potential due to how readily they rained naturally when cloud top temperatures were barely cold enough for the seeding agent to even work.

So in 1987 we believed that what I was reporting would not fly in an American journal. The major problem again for AMS journal reviewers would be, as it was in 1983:

How could the HUJ experimenters not know this?

Overseas reviewers, however, such as a Sir B. J. Mason, et al (I don’t know who the reviewers actually were) were likely to be more circumspect, and not at all surprised by mischaracterizations of clouds by members of the cloud seeding community. And they were more circumspect. (As they likely would be with my present manuscript.)

My 1987 submitted manuscript was accepted and published in the January 1988 issue of the Quarterly Journal. My conclusions about the general nature of Israeli clouds have been confirmed on several occasions beginning in the early 1990s in airborne measurements by Tel Aviv scientists and later by others. I had indicated to Prof. AG and several other scientists to whom I wrote to from Israel, that from ground observations the clouds of Israel were producing “50-200 ice particles per liter at cloud top temperatures >-12°C” and that “ice was onsetting in Israeli clouds at top temperatures between -5°C and -8°C.” Of course, these were fantastic statements at the time for those scientists that I wrote to, but they were verified by Tel Aviv scientists whose paper with cloud tops and ice concentrations appeared in 1996 (J. Appl. Meteor., Table 4).

The HUJ researchers, however, could only discern this general characteristic of Israeli clouds in 2015; that precipitation onsets only a little above the freezing level. The Israeli experiments’ Chief Meteorologist, Mr. Karl Rosner, already knew this in 1986 (see his letter), as did the Israel Meteorological Service forecasters I spoke with in 1986. What’s wrong with this picture?

Moreover, as happens in conflicted science environments, the HUJ authors of the 2015 paper could not bring themselves to cite my 1988 paper that had reported 27 years earlier what they were finally discovering about their own clouds in 2015. What does this kind of citing tell you about the science emanating from this group at the HUJ? A lot.

The cause of such high precipitation efficiency, the 2015 HUJ authors asserted, was “sea spray cleansing” of clouds coming across the Mediterranean Sea from Europe. This made them ready to produce precipitation at modest depths with only slightly supercooled cloud tops. The Mediterranean Sea is approximately five million years old.

It was, however, in 1992 that the HUJ seeding researchers first discovered that shallow clouds with slightly supercooled tops do rain in Israel; but only in the specific situation when they were impacted by “dust-haze”, and then mostly on the southern margins of showery days, they reported.

So, why did it take HUJ researchers so long to learn this about their “sea spray cleansed” clouds with all the tools at their disposal? Only the current HUJ seeding leadership can tell us.

9.  About the new Israeli randomized cloud seeding experiment and the airborne study that prompted it

Israel, abandoning any idea that the prior cloud seeding experiments had “proved seeding”, again indicative of a terminus, has started over with a new experiment to see, if in fact, cloud seeding works. It’s called, “Israel-4”, now in its seventhseason. No preliminary results have been reported, which is odd. In contrast, the seemingly successful first two Israeli experiments had many interim reports.

Unfortunately, the funder of this new experiment, the Israeli National Water Authority, hired the HUJ “seeding unit” to evaluate seeding potential in the Golan Heights region in preparation for the start of Israel-4, a mistake akin to having the fox guard the hen house.

I reviewed the published article that came out of that HUJ research in 2015 (Atmos. Res.) that described itself as the background airborne cloud study for the new experiment. After reading it, I was not sure it had even been reviewed!

It clearly exaggerated seeding potential in my view; the 2015 authors could not even disclose ice particle concentrations and the rapidity at which they develop in Israeli clouds, critical information for seeding evaluation purposes, claiming that they could not measure ice particle concentrations due to inadequate equipment (manufactured by Droplet Measurement Technologies, Inc.)

I wondered, too, why I wasn’t selected as a reviewer by Atmos. Res. of that 2015 article? My decision on the manuscript would have even been: “accept, pending MAJOR revisions”! This article had some of the best objective writing by the HUJ’s “seeding unit.” But also had a Jeckyl-Hyde aspect where misleading statements kept popping up and along with over-optimized seeding scenarios.

And to the INWA? I would have implored them:

“Don’t do a cloud seeding experiment based on this paper! Get outside researchers to evaluate seeding potential!”

If Israel-4 fails to produce rain via seeding, the faulty HUJ assessment of seeding potential in the Golan will be the cause; the fox will have guarded the hen house as well as expected. And that faulty paper will be consistent with the work of the HUJ seeding group since the early 1970s, work that consistently exaggerated the seeding potential in Israeli clouds and seeding results.

The Nightmare before Banff: A Science Coming Out Saga

The story of a coming out science “party” for a young, under-credentialed worker who has found that his greatest expertise is finding fault in the work of others.  But he now, for the first time, must defend his work overturning that of the leading scientists in his field  “at conference.”

STORY BOARD

  • Not a horror movie, but a science story that reveals the human element in science. Our protagonist is a shy, under credentialed weather forecaster who takes on the best scientists in their field but must pass through a frightening mental hoop before demonstrating at a conference that one of their published cloud seeding successes was illusory.  Well, I guess it could be a movie, one with a scary part…
  • This cloud and weather-centric protagonist has already taken the famous scientists on in the published literature in May 1979 when his first ever paper appeared in a journal reanalyzing one of their most important experiments.  But he must now defend his work in person at a large conference in Banff, Alberta, Canada, in October 1979.  This will be his first presentation at a scientific conference, his “coming out party.”
  • However, an advance program for the Banff conference is also published in May 1979 and it reveals that our protagonist’s findings will be addressed by the famous scientists right before he gets up to present them!   Colloquially, “WTF”?
  • In September 1979, he learns from his lab chief that the famous scientists are, indeed, working on a new analysis of the experiment that our protagonist will discuss at Banff.  Palpitations and dread levels rise.  He writes to the famous scientists inquiring about this new analysis of their experiment, but receives no reply.
  • Our protagonist lives a nightmare few months before the conference, wondering even if he should go and be humiliated as he expects.  He is not on a credential par with those scientists at any level.  He is just an ordinary meteorologist and weather forecaster with no advanced degree, one of the very few with only a bachelor’s degree presenting at the conference.
  • Our protagonist redoes his published paper, looking for errors he might have made, or ones that the reviewers might have missed, ones that will surely be emphasized at the conference.  He doesn’t find any.
  • He does go to the October conference filled with terrible dread anyway, bur his allies, the director of his group, and a supporting prof are with him.
  • Late in the afternoon before his presentation the next day, one of the famous scientists tells our protagonist that they won’t be discussing his paper after all before he gives it.  They acknowledge, behind the scenes, that they, “screwed up.”
  • The story ends on a happy note.  There is no criticism of his paper.
  • Our protagonist also realizes that his awful 1975 gaffe in a local newspaper story about the work of the famous scientists may have given them an understandable motive for some “payback” as the months of dread, intentional or not, seem now to have been.

Note:  There is some real bawling described in this saga by our protagonist concerning the journal publication hurdles that one must go through.  In his case, because his controversial work overturning the published research of others was done on his own initiative, “time and dime,” there is an awful lot of emotional “ownership” in what happens.

If you are now like I was  in this long ago,  “anxiety chapter” of my life, one that so many of our citizens are likely experiencing today due to so many unwise changes being foisted on our country, the war in the Middle East,  etc., I highly recommend this video on anxiety:

https://www.prageru.com/video/can-anxiety-be-a-good-thing-with-dr-chloe-carmichael?utm_source=Iterable&utm_medium=email&utm_campaign=campaign_8040634

Art

==================================================

————-The Nightmare before Banff—————-

The program for the October 1979 Banff 7th Conference on Planned and Inadvertent Weather Modification came out in the Bulletin of the American Meteorological Society (BAMS) in May 1979.  My talk there was going to be a coming out party for me because it was going to be my first presentation at a conference.  Previously, I had just run a microphone around at a conference for those who had questions after a talk.  And I was going to present at a joint meeting of both the Planned and Inadvertent Weather Modification crowd, and the “Statistics in the Atmosphere” crowd, too; in other words, in front of a big audience of top scientists.  May 1979 was the same month that my peer-reviewed paper reanalyzing the Wolf Creek Pass experiment (WCPE) came out as the lead article in the J. Appl. Meteor.  That was the work I was going to summarize at Banff.

But what I saw in the May BAMS program for the October conference terrified me.  The famous leaders of the Colorado State University (CSU) cloud seeding experiments, Prof. Lewis O. Grant, and their statistician, Dr. Paul W. Mielke, Jr, were going to discuss my paper before I gave it!

Yikes!

Mielke and Grant were at the top of the mark in the world of cloud seeding/weather modification and had published several papers describing their prestigious cloud seeding successes at Climax and Wolf Creek Pass, Colorado.

I wondered, too, how the program organizers could allow this sequence.

I was going to be humiliated, I was sure, due to errors that I had made, but did not, or could not recognize due to my own bias or ignorance.   Maybe I had not even copied down runoff or precipitation data in my dozens of “pen and ink” spreadsheets correctly from the volumes of government published data, the source of my analyses.1

I had palpitations off and on from the time I read that BAMS program until the day before my talk at Banff.   I just could not imagine how horrible it was going to be; I repeatedly envisioned that my truly limited skills were going to be exposed. I was sure I would have nothing to say when I got up to speak after Professor Grant and Dr. Mielke had spoken and had surely decimated my reanalysis.  I would be standing there, I imagined, with my mouth open, maybe apologizing for errors.  It would be similar to that 3rd grade trauma with Ann Stone, a never forgotten humiliation!2

I would go to movies, “Serpico” comes to mind, and right in the middle, I would think about Banff, and my heart would seem to want to burst out of my chest, the palpitations were so strong.  I feel lucky I didn’t keel over during those months before Banff.  My heart is pounding right now and I am shivering as I flesh out this chapter of my life.  This must seem silly to more experienced people I suppose.

September 1st, 1979: dread increases. 

I learn from Prof. Peter Hobbs, the director of my group,  that a new analysis of the Wolf Creek Pass experiment is being worked up by the seeding experimenters at Colorado State University.  I write to their leader, Professor Lewis O. Grant, and ask him about the new analysis, but I get no reply.  Now I am positive all the faults that I missed in my paper will be shown up, that my presentation will be shown to be severely flawed and worthless before I give it!

I often thought, too, that I just wouldn’t go to Banff, though my allies at the University of Washington, Profs. Peter Hobbs and Lawrence F. Radke, were going, so that wasn’t really wasn’t an option.  Prof. Hobbs was also going to present my Colorado work that showed that there was no basis for the foundation of the CSU cloud seeding claims that supported huge increases in snow due to seeding when the 500 mb (hPa) temperatures were equal to or higher than -20°C, a temperature level that the experimenters had misperceived as ones that were a proxy  for cloud top temperatures.

Prof. Hobbs had reviewed my Wolf Creek Pass experiment (WCPE) manuscript drafts, too, when I started bringing them in from home, but he did not know how reliable my work was; Prof. Hobbs was a facilitator/editor of publications that originated within his group.  He also did not allow papers to go out from his group without his purview.  While improving drafts submitted to him, he usually became a co-author, and sometimes the lead author, as on Hobbs and Rangno (1978, a reanalysis of the Skagit Project) and again on Hobbs and Rangno (1979, “Comments on the Climax and Wolf Creek Pass Experiments”).

The WCPE was the third in a trifecta of cloud seeding successes reported by CSU scientists that formed an imposing edifice of cloud seeding successes.  They appeared to reinforce one another, and the Climax experiments had been specifically called out by our best scientists as cloud seeding successes (e.g., the National Academy of Sciences (NAS) in 1973, Warner 1974).  Prof. Hobbs had been a member of the NAS panel that had praised the CSU cloud seeding work and it was also cited in his popular 1977 graduate level book with Prof. J. M. Wallace, “Atmospheric Science:  An Introductory Survey.”

Moreover, the WCPE cloud seeding success, whose preliminary results were being presented to the Bureau of Reclamation’s cloud seeding division in 1969, was the reason why the massive Colorado River Basin Pilot Project (CRBPP) took place centered on Wolf Creek Pass.  Greater potential increases in snow due to cloud seeding were being reported by CSU scientists in the WCPE as a characteristic of storms in southwest Colorado in the San Juan Mountains than in northern Colorado where their highly regarded Climax randomized experiments had taken place.

The CRBPP remains as the nation’s costliest randomized orographic cloud seeding experiment.   In my opinion, the Bureau of Reclamation made many efforts to “do it right” by randomizing it, having others who did not know the if a random decision had been called, measure the precipitation each day.

Prior to carrying out the reanalysis of the WCPE, I had been a forecaster with the CRBPP for all its operating winters from 1970/71 through 1974/75, the only meteorologist to have been with it the whole time.  I had been, Acting Project Forecaster during its first season following the departure of Project Manager, Paul T. Willis, and Assistant Project forecaster for the remaining seasons.  I drew the morning and evening weather maps3and made forecasts five days a week as Assistant forecaster, and seven days a week as Acting Project Forecaster for most of the 1970/71 season.[2]  Namely, I had something to do with most of the random calls for an “experimental day” in the CRBPP.

I knew I had to go to Banff or forever be noted as a coward and take whatever Professors Grant and Mielke delivered no matter how humiliated I might be.

—————–

There were no personal computers in those days of the mid-1970s, of course; I was using a $100 Texas Instrument handheld calculator for statistics and correlations from the dozens of pen-and-ink spreadsheets9 I had made copying raw data from the CRBPP, runoffs from geological survey books, and from NOAA Climatological Data and Hourly Data publications.  Sometimes I would have to enter a pair of numbers to get correlations three times if the second one didn’t produce the same result as the first cycle.  That, too, was a nightmare and so frustrating when it happened.

Due to that May 1979 program in BAMS, I redid the whole WCPE published paper from scratch thinking there must be a serious problem.  I didn’t find one, but still, I thought, SOMETHING must be wrong with it and I was going to hear about it at Banff!

———————

Some regrettable, necessary background that might have contributed to the BAMS program sequence I saw: payback?

A careless and inappropriate metaphor that I said to a newspaper reporter at the end of a recorded interview became a secondary headline in the Durango Herald newspaper in November 19754:

Cloud Seeding… Rangno:  ‘Watergate of Meteorology.’”

Since Watergate was a burglary by political actors, I had carelessly implied criminal activity had taken place in the reporting of CSU’s cloud seeding work!  Yikes!

What I had meant was that if the CSU work was overturned it would be a “big deal” since it had led to the funding of the massive CRBPP.  Watergate was on everyone’s mind in 1975, and what I said just came out without a lot of thought.

The reporter, Mike McRae for the Durango Herald, and who had told me after our long interview that I could review his article before it came out, canceled my pre-pub review the evening before, saying, “Trust me,  Art.”

I left for Fresno, California, the next day for short term employment with Atmospherics, Inc., a cloud seeding company, and did not see the Herald article until a week after it appeared.  It was sent to me by a Durango friend and E. G.&G., Inc., co-worker.

I couldn’t sleep after I saw it.

How that Durango newspaper headline happened: a cautionary tale for young scientists who might deal with the press. 

The reporter who recorded my November 1975 interview within the confines of the Durango Herald offices told me I would get to review his article before it appeared, an unusual offer.  I wanted to make sure that what I told him was accurately portrayed.  I had been cautious in what I said, and that was reflected in the full article.

However, the evening before it was to appear and a day on which I was traveling to Fresno, California, the reporter, Mike McRae, called to say that I wouldn’t be able to review his writeup beforehand after all.  He assured me it would fine with those magic words: “Trust me, Art.”

But after I saw it in Fresno, I couldn’t sleep, as you would imagine.  The body of the piece was accurate, but that secondary headline; oh my.  I was expecting to hear from CSU lawyers at any time!5

Why was I interviewed in the first place? 

I had previously written a critical piece concerning the obstacles to successful cloud seeding that were encountered during the CRBPP that perhaps McRae had seen in the spring of 1974 in a Telluride, CO, magazine, the Deep Creek Review.  Unknowingly, the reporter was also setting me up for publication of two contrasting views of cloud seeding; mine and the CRBPP Project Manager, Mr. Larry Hjermstad, a seeding partisan who went on to form a very successful cloud seeding company in Colorado, Western Weather Consultants.

I had no problem with the idea of, “contrasting views” when I saw the paper.  It’s what the public should see so that they can take the best path forward when there are questions about something.

Those nationally recognized CSU experiments, lauded by our best individual scientists and the National Academy of Sciences[3] itself, had led to the multi-million-dollar CRBPP, still the mostly costly such mountain cloud seeding experiment ever undertaken ($40-50 million in 2020 dollars).  So, in fact, it would be a scientific story of great magnitude if the CSU cloud seeding successes reported on many occasions in peer-reviewed journals, were illusory.

When I was interviewed in November 1975, the CRBPP had ended in the spring of 1975 without proving cloud seeding had increased snowfall.  It had been widely expected beforehand that the CRBPP would confirm the CSU results with as much as 50% increases in snowfall on seeded days and something like 250,000 additional acre-feet of runoff even though it had been randomized.

But instead of questioning the validity of the successes on which the CRBPP was based, it was believed, and published in the journal literature on several occasions, that it was the conduct of the CRBPP as well as design flaws that caused it to fail.  It was an odd interpretation to me due to the discrepancies in the CSU hypotheses revealed during the CRBPP.

However, blaming the faulty conduct of the CRBPP did remove blame from the sponsor of the CRBPP, the Bureau of Reclamation’s cloud seeding division, and the reviewers of those faulty manuscripts that allowed ersatz claims of great cloud seeding successes to reach the peer-reviewed journals in the first place.

When I next saw “Mike the Reporter” in a Durango supermarket, he advised me, “Never trust a newspaper reporter.”

Q. E. D.

——————–

Consequences of the 1975 Durango Herald article

Mike McCrae’s story was to have a major impact at CSU and was to save me a lot of work (at least for a while).  The story reached the National Science Foundation that had partially funded the prior cloud seeding experiments by CSU scientists.   They wanted to know from them, “What’s going on?”6

Moreover, I had stated in the Durango Herald article that I was going to reanalyze ALL three of the major CSU cloud seeding experiments!  What was I thinking?  I had no idea how much work that was going to be.  I just felt something had to be done by someone, even if it was by an under-credentialed weather forecaster.  But, I “knew the territory” and the weather patterns as a forecaster virtually like no one else.  And it was becoming clear that the ”narrative” for the failed CRBPP was design flaws and poor execution on the part of the E. G. & G., Inc. seeding team that I was a part of.

CSU scientists, perhaps concerned over an outsider reevaluating their experiments, beat me to it.

The Apology and Request for Data from Colo State University

After returning from Fresno, California in early December 1975, I drove to CSU to apologize in person for my newspaper gaffe to Prof. Lewis O. Grant, leader of the CSU seeding experiments. But I also went there to obtain data from their cloud seeding experiment at Wolf Creek Pass.  I had come to believe it was suspect as a success due to the many discrepancies and obstacles to cloud seeding that were encountered during the CRBPP.

Prof. Grant was extremely gracious in our meeting in accepting my apology and supplied the data I requested; he was that kind of guy.

Updating Prof. Lewis O. Grant on my reanalysis

 During the winter of 1975/76 and after my visit to CSU, I remained in Durango to work on the reanalysis of the WCPE, living off my savings (no skiing!).   I passed Prof. Lewis O. Grant, progress reports as I moved along on my reanalysis over the following two years. I had promised him I would do this when I met with him in December 1975 in exchange for the CSU data.

He was actually encouraging me as I forwarded my “progress” reports to him—yes, again, he was that kind of guy.  Prof. Grant wrote at one point that I had found “something important” as the WCPE unraveled.   But after a while he stopped responding to my reports and I stopped sending them.

1976:  Joining Peter Hobbs’ Cloud Physics Group

By September 1976, after that self-funded “sabbatical” in Durango during the winter of 75/76, I had been hired by Prof. Peter V. Hobbs to be a part of his “Cloud Physics Group” at the University of Washington when a member of his airborne research group left.7

I had called Prof. Larry Radke in his group in August 1976 about the Cloud Physics Group’s airborne study in Durango that had taken place during the spring of 1974.  Prof. Radke informed me that there was a job opening in Prof. Hobbs group and, “Was I interested in applying for it?”  I was, and I was interviewed over the phone by Prof. Hobbs soon afterwards and got hired!

In August I was hired into his group as a “Flight Meteorologist” taking the place of Mr. Don Atkinson who had resigned to go back to school.  I also had an offer from Atmospherics, Inc., to work more short-term cloud seeding programs for them around the world.

I took the offer from Prof. Hobbs.

I wasn’t sure I was skilled enough to be in academia under a world class scientist like Prof. Hobbs.  I wasn’t sure, either, how I would do flying in their 1939 manufactured B-23 research aircraft.  I had been on one of their flights during their 1974 research project in Durango and, surprisingly,  didn’t get motion sickness.

I started at the University of Washington in mid-September 1976, and continued to work with the data of the Wolf Creek Pass experiment at home and on my own time at the UW.  Prof. Hobbs, ebullient about cloud seeding at the time I arrived due to just having finished the successful “Cascade Project,” a non-randomized seeding experiment, took a great interest in the drafts of manuscripts I began to bring in, editing them and revamping them, namely, using his great skills to improve my drafts.

Prof. Hobbs had just been a member of the National Academy of Sciences (1973) and in composing their optimistic report on the Climax, CO, experiments, had written a similar optimistic, “Personal Viewpoint” in 1975 in Sax et al.’s review of weather modification in the J. Appl. Meteor.

Banff:  The Nightmare Ends

In a hallway of the convention center in Banff where the talks were going to be given, I ran across Prof. Grant coming my way the evening before my talk.  He said, “Art, I’m not even going to talk about Wolf Creek.”  I was relieved but wasn’t sure what was going to happen.  I still don’t know why Prof. Grant or Dr. Mielke didn’t tell me this months or weeks in advance.  I was their nemesis, of course, and maybe it was as simple as that. Or, maybe I was being punished for the awful Durango Herald headline?  Who could blame them?

The next day despite what Prof. Grant had said, I was so nervous and sweating before my talk, that I grabbed a can of deodorant and sprayed my hair and forehead with it by accident before walking over to give it.  I thought I had grabbed a can of hairspray!

I opened my talk by telling the 300 or so scientists in the “joint meeting” audience that Wednesday about what I had done due to my nerves, spontaneously using it as my intro at this, my first conference presentation.  I followed this with a quip, “At least now my forehead won’t sweat.”  It got a good laugh, I relaxed some, and got through the 10 min talk that had caused so much stress beforehand.

I ended my talk on what I hoped was a conciliatory note: “Who wouldn’t have believed that all this wasn’t due to cloud seeding?”, referring to the large runoff anomalies of the three seeded seasons of the WCPE reported by Grant et al. 1969, later by Morel-Seytoux and Saheli (1973).  The chances that they were due to natural causes could be rejected with a 99% confidence level (the same level as the Skagit Project that was also misperceived as a cloud seeding success).

But, soberingly enough, it was beyond a doubt that natural storm factors are what had created those WCPE runoff anomalies that looked so much like the result of cloud seeding.  The key mistake by the experimenters in both the WCPE and the Skagit project s was NOT declaring controls in advance of operations.

It was at this meeting that Dr. Paul Mielke, Jr., told me later that, “we screwed up.”  What a terrific guy he was to say that!

Banff ended on a high note.  I often think how horrible it would have been if I had, indeed, “chickened out” due to the recurring fear I had after the Banff program came out.

October 1979:  All that the CRBPP had been based on was gone after Banff

 Retraction of the of the key Climax, CO, randomized wintertime cloud seeding successes first appeared in March 1979 (J. Amer. Stat. Assoc. by Prof. P. W. Mielke, Jr.); the results appeared to be part of a statewide pattern and not localized to Climax.   The results were verbally retracted by J. O. Rhea at Banff in October 1979.8  This occurred after so-called “downwind” increases in snowfall on the same days as seeding had seemed to have increased snow so much at Climax were found to be due to a natural bias.  Upslope winds that favored more snow on seeded days at downwind locations from Climax were more prevalent on those days (Meltesen et al. 1978) compromising the downwind seeding claims.

So, within six months in 1979, March through October, all that the CRBPP had been based on, which included my WCPE reanalysis published in May, was gone!   It can be argued that Mike McRae’s 1975 article set off a major chain reaction.

It was regrettable that the 1979 Banff program summary by Semonin and Hill, finally published in 1981 in BAMS, failed to acknowledge the historic retractions, or the critical unreliability of the Climax experimenters’ claims about cloud top temperatures that was presented by Prof. Hobbs.  Perhaps Semonin and Hill did not actually attend the conference?  Or forgot what had taken place?

However, Semonin and Hill, while missing those key elements, did take note of the historic “leafletting” of conference attendees by the CSU experimenters.  In their leaflet they claimed that the Hobbs and Rangno (1979) critique of the foundations of the CSU experiments got it wrong and defended their work. This is the only conference that I know of in which pre-session conflictive leafletting has been conducted.

The emotions surrounding journal work done on your own time and initiative

I am guessing that many young scientists, excited about their work, have had this experience with their first manuscript.

The manuscript of the WCPE reanalysis was sent out in March 1978, almost two and a half years after I began working on it in November 1975.  Prof. Peter Hobbs took a great interest in my unfunded work once I arrived in his group and told him about it after I was hired in September 1976.

Prof. Hobbs did not permit articles to be submitted to journals from members of his group without his going over them.  Due to Prof. Hobbs experience and editorial gifts, the drafts I brought in from home were steadily improved.

I had even done my own drafting of all of the 21 figures in the WCPE reanalysis, to give you an idea of the magnitude of this overall effort that I was so bonded to.  Here’s an example of one I did from the 1979 WCPE reanalysis publication:

As anyone could imagine, doing your own research, drafting your own figures, brings more “ownership” and emotional attachment than might be the case with funded research. This became only too clear when the long-awaited reviews of my reanalysis of the WCPE came back in a manila envelope in August 1978, sent from Dr. Bernard A. Silverman, the editor for this manuscript for the Amer. Meteor. Soc.’s Journal of Applied Meteorology.

It took me a week to open that envelope.  More palpitations; would my manuscript be rejected or accepted?

Eventually, I opened it and read the first review that Dr. Silverman had placed on the top of what turned out to be three reviewers’ assessments of my manuscript.

That first reviewer recommended, “reject.”

The reviewer had written that I had no business doing a reanalysis of the CSU work; I didn’t have the background to do it and the paper should be rejected.  There was no real criticism of the contents of my manuscript. Nevertheless, I wept uncontrollably, shaking; I was going to fail in my monumental effort.

That “reject” reviewer was only too correct concerning my lack of a technical background to do what I had tried to do. But it was also clear to me after several years after 1975, that a better credentialed researcher was not going to be looking into the original CSU experiments the massive CRBPP had been based on.   That would have been risky.   It was much better for all involved to walk away from the CRBPP, claiming it was not conducted properly, rather than to learn that millions were spent conducting it due to prior reports of cloud seeding increases in snow that were illusory.

 I showed a graduate student friend, Tom Matejka, that first reviewer’s reject letter.  Tom, laughing, drew the following cartoon of how he thought that reviewer saw me:

 I still treasure this political cartoon by Tom.

But, unknown to me at this same time, CSU cloud seeding researchers were on the brink of retracting their results for the more prestigious Climax experiments.

My five-season experience as a forecaster, and having worked under orographic precipitation specialist, J. Owen Rhea, during the CRBPP gave me the knowledge and wherewithal to do it.  It may sound “crackpotty”, but I felt I had a responsibility to do it since no one else was going to and I “knew the territory.”  I couldn’t just walk away from it.  All that was learned during the CRBPP strongly suggested there could not have been snow increases due to seeding in the prior CSU experiments.

============

It took me about another week to look at the other reviews contained in that manila envelope Silverman had sent as I pondered the size and effort I had put into what surely was going to be Anand content in  enormous failure.  I am sobbing right now remembering that time; tears flowing!9 Where did this come from?  I haven’t thought about this chapter of my life in decades, but it’s like the same exact feelings I had so long ago have body-slammed me as I write about them!  Maybe I need a grief counselor…

When I finally had the courage to look at the other reviewers’ assessments, they both recommended, “accept” with revisions.

I wept uncontrollably again.  I was going to “get in” after all, though it would now be without Prof. Hobbs purview in carrying out “revisions” required by the reviewers.   Why did Prof. Hobbs wash his hands of my effort at this point?  Answer:  over the placement and content in an acknowledgement.

————

Professor Hobbs washes his hands of the WCPE manuscript before the final submission

By the time that the reviews had come in, Prof. Peter Hobbs had washed his hands of my manuscript.  Prof. Hobbs had written an acknowledgement for himself and had placed it ahead of that for J. Owen Rhea whom I had originally placed first.  Owen Rhea was the initial lead forecaster for the CRBPP, and later, Acting Project Manager under whom I worked.  I had learned so much working for him concerning orographic precipitation patterns.  I don’t recall that I had thanked Prof. Hobbs in those early drafts after he improved them.  I only have a  1977 draft, prior to Peter’s scrutiny in which this acknowledgment appeared in which I REALLY wanted to thank the CSU’s Prof. Grant and his staff:

“Acknowledgements. The author would like to thank Paul Willis of the National Hurricane Research Laboratory and Dr. J. Owen Rhea of Colorado State University who, as Project Manager and Project Forecaster, re­ spectively, for the first season of the Pilot Project, provided many insightful and illuminating discussions of the Colorado State University cloud seeding experiments which helped inspire this paper. I would also like to thank Professor Lewis O. Grant and the staff of Colorado State University for their unhesitating cooperation and willingness to examine “both sides of the coin.” Appreciation is also given to Mr. Larry Hjermstad of Western Weather Consultants in Durango for his cooperation in providing climatological data and copy facilities at a low cost, and Mr. Travers T. Ward for copying it all.”

The 1979 acknowledgement in the WCPE reanalysis publication was this:

“Acknowledgments. The author wishes to extend his deepest appreciation to Dr. J. Owen Rhea for his in­ valuable encouragement, comments and criticism during the course of this research. Particular thanks is also due Professor Peter V. Hobbs whose cogent editing and restructuring of this paper greatly improved its presentation and coherence. A review by Dr. Colleen A. Leary also improved the intelligibility of this paper. I would also like to thank Professor Lewis 0. Grant and the staff of Colorado State University for their unhesitating cooperation and willingness to supply data and, other information relative to the WCPE.  Appreciation is also extended to the Bureau of Reclamation, Division of Atmospheric Water Re­ sources Development, and to Mr. Larry Hjermstad for supplying data relative to the Colorado River Basin Pilot Project. The author is also indebted to Mr. Travis T. Ward of Durango for his copying of the numerous copies of Climatological Data requested by the author.”

Peter Hobbs also suggested at one point that he would normally be a co-author after editing and improving the presentation of manuscripts like mine.  I didn’t take the hint; maybe I should have?

I journeyed on and the revised version of the manuscript went to the journal in the fall of 1978 without Peter Hobbs’ expert purview.  I had now alienated perhaps my only ally, certainly the most important one.

Speculation on the fallout from the acknowledgement kerfuffle with Prof. Hobbs

The above happenstance may also explain why Prof. Hobbs took first authorship on the reanalysis I did of the Skagit Project (Hobbs and Rangno 1978) done on my own initiative, but while at work in Prof. Hobbs’ group.  It was submitted to the journal after the WCPE manuscript was submitted but was accepted and published ahead of it. I then I became concerned that it might appear that Prof. Hobbs had directed me, a little-known player in the weather mod game, in the WCPE paper that was to follow.  It would make sense that a grand player in the weather mod arena like Prof. Hobbs had directed an under credentialed subordinate on how to reanalyze cloud seeding experiments.

An inappropriate authorship sequence was the case, too, in the work I did that undermined the foundations of the Climax and Wolf Creek Pass experiment that was published as, “Hobbs and Rangno” 1979, J. Appl. Meteor.  Prof. Hobbs even presented this work as a sole authored work at the International Conference on Cloud Physics at Clermont-Ferrand.   I acceded to these authorship acts, though they were unsettling.   Only recently did I blow a gasket when I discovered this caption under Figure 2 of Hobbs (1980):

Issues of credit and authorship within Prof. Hobbs’ group have persisted right up until today (2021), when a senior faculty member, formerly in Prof. Hobbs’ group, could not cite a paper on rainbands where Prof. Hobbs was the lead or sole author because he had not done the work and knew who did.  I know that a reader at this point would say, “Get over it!”  Sorry, can’t.

 

ALR, with a life story vignette by someone who only wanted to forecast weather when he came to Durango. Thanks for reading it, if you do.

==============FOOTNOTES========================

1An example of a pen and ink spreadsheet I did in the late 1970s for those younger researchers who can’t imagine such a thing. You can’t imagine how many of these kinds spreadsheets I did in support of the WCPE reanalysis!  Dozens at least. Bottles of Shaefer’s ink were consumed!

2I remembered, Ann Stone, and that third grade math humiliation where Ann was to add up a column of five of the same number, and I was to multiply that number by five, all this with both of us at the blackboard in front of the class.  I was to demonstrate how much faster multiplying something was than adding up a column of the same number.   I couldn’t do that multiplication while Ann finished quickly.

6J. O. Rhea, Prof. Grant’s grad student, personal communication,  1975.

3The Bureau of Reclamation specified that the seeding contractor, E. G. & G., Inc., personnel draw their own regional surface, 700 and 500 hPa weather maps rather than rely on National Weather Service facsimile maps. I was a good weather map drawer/artist.   Since it’s fall, I will use this map with a bit of humor in it.

4Recently, having a different perspective, I have deemed this Durango Herald article as a tongue-in-cheek, “Historic Moments in Weather History:  “Art Rangno EXPLODES onto the weather mod scene”, a title meant to generate a smile.    I was to work on reanalyses and critical commentaries on cloud seeding experiments for the next 45 years!  Still am!  What is the matter with me?  Get a life!  Haha, sort of.

5That was to happened later….several years later, and had to do with asking for an investigation of some possible real science crime; withholding results that might have prevented the multimillion dollar CRBPP randomized cloud seeding experiment from taking place.

7I was going to take the place of their, “Flight Meteorologist,” Don Atkinson, who later confided in me that he thought the job I was going to take, his, was a “dead end.”   Atkinson was resigning to go get his master’s degree in business administration. He eventually returned as the business administrator for the University of Washington’s Atmos. Sci. Department.

8Rhea presented for Grant et al. who was officially listed as the presenter.

9That surprise grief attack happened a few months ago when I first started rehashing this “life chapter” after forgetting about for so many decades.   I seem more inured to emotions about this as I go through  draft today.

 

 

 

Part 2: PETER HOBBS and me (contains irony)

Peter V. Hobbs became one of the most vociferous scientists to show that some published claims of seeding impact were exaggerated, false, or unverifiable.”

The above statement was contained in a flyer advertising the 2018 Peter Hobbs Endowed Lecture1 at the University of Washington by a leading scientist in weather modification.  This account focuses on the word, “became” in this flyer, and why Peter Hobbs’ optimistic view of cloud seeding through the mid-1970s was reversed to the point that by 2001 he could refer to the body of cloud seeding literature as, “often unreliable.”

This account will explain how Peter came to be a critic of cloud seeding literature when he was so optimistic about seeding after his 1970s Cascade Mountains project.

I MUST write a soliloquy about my relationship with Peter V. Hobbs in the weather modification/cloud seeding domain, with the good and the bad even if nobody cares and nobody reads it but me.  Somehow doing this blog in the latter stage of life that I am now in gives me peace.  I have wrangled (“Rangno-ed”, haha) over this credit issue for decades without really doing anything.

Had criteria been in place such as that today used by Geophys. Res. Letts., shown below, authorship sequence would mean nothing.  Who did what would be right there for all to see!

At the same time, I don’t want to downgrade what Peter did, either.  I tried as hard as I could to write a draft of research findings that he could not measurably improve.  I never could.  I was crushed when my marked up draft from Peter come back, but I was able to see how he had improved it.  He performed miracles of clarity to what I wrote.  And that’s why I would add another element to the Geophysical Research Letters’ author contributions example here from the 2022 article, “Tree Rings Reveal Unmatched 2nd Century Drought in the Colorado River Basin:

“Author Contributions:

Conceptualization:

SubhrenduGangopadhyay, Connie A. Woodhouse,Gregory J. McCabe, Cody C. Routson, David M. Meko

Data curation: Subhrendu Gangopadhyay

Formal analysis: SubhrenduGangopadhyay, Connie A. Woodhouse, Gregory J. McCabe, Cody C. Routson, David M. Meko

Investigation: Subhrendu Gangopadhyay, Connie A. Woodhouse, Gregory J. McCabe, Cody C. Routson, David M. Meko

Methodology: Subhrendu Gangopadhyay,  Connie A. Woodhouse, Cody C. Routson, David M. Meko”

I would add, for situations that others might have that are similar to mine, this:

Editing; improving clarity of material:

____________________

==========================

In September 1976 when I joined Peter’s group, I brought “insider” information to him that was to impact his then optimistic views of cloud seeding experiments in Colorado conducted by Colorado State University (CSU) scientists.  From 1970 through 1975, I had been the Acting Project Forecaster and Assistant Project Forecaster with the nation’s largest ever randomized orographic cloud seeding experiment, the Colorado River Basin Pilot Project (CRBPP).  The goal of that sophisticated experiment was to replicate the large percentage increases in snow that Peter and the scientific community had believed to have been brought about by cloud seeding in randomized orographic experiments at Climax and Wolf Creek Pass, CO.

Also, when I arrived, Peter and his group were in the “afterglow” of the Cascade Mountains seeding experiments that produced a tremendous amount of information about storms published in numerous journal pages describing that experiment.  Peter had also contributed his optimistic view of cloud seeding in his “personal viewpoint” editorial in Sax et al. 1975 and in his book with Prof. Mike Wallace in 1977.

Peter, too, as a panel member of the NRC-NAS (1973) review of climate and weather modification, had seen to it that a non-randomized cloud seeding experiment in the northern Cascades, the Skagit Project, was included as a cloud seeding success into the Panel’s review.  It sure looked like one.

By 1976, however, I was a person who could no longer trust peer-reviewed published cloud seeding literature as Peter did.  Peer-review in science is supposed to eliminate false claims.  This reversal of an idealistic attitude about science occurred when I saw false claims published in a peer-reviewed journal, ones that even the authors knew were false!

What was truly troubling to me, as much as seeing false claims published, was that scientists who knew that false claims had been published, did nothing to correct them in post publication “Comments.”  The silence was deafening.

While Peter Hobbs was optimistic about cloud seeding, I was laying out the problems that were being experienced in the CRBPP, as shown in the two articles in the Appendix of this summary, one appearing in the Telluride, CO, magazine, “Deep Creek Review,” in the spring of 1974 and the second in the Durango Herald newspaper in November 1975.  In the latter article I announced that I was going reanalyze all the CSU cloud seeding experiments!  I had barely started on one when I made that overzealous statement!

In the spring of 1974, I had a chance to visit/rant “big time” about the many problems that the CRBPP was experiencing to Peter’s B-23 aircraft group during their six-week investigation of seeding plumes and of the cloud microstructure over the San Juan Mountains, the target of the CRBPP experiment.  I was the Assistant Project Forecaster with the CRBPP at that time,  and was to be the only meteorologist with that project during its entire five winter seasons.  The Washington group was led by Prof. Lawrence F. Radke during the first two weeks, and the last four weeks by Mr. Don Atkinson.[2]    One member of Peter’s group was James Rodgers Fleming (who was to make a name for himself writing a history of early cloud seeding in the United States (Fixing the Sky) and writing a biography of the life of Joanne Malkus Simpson).

The Washington group had been contracted to do this work by the sponsor of the CRBPP, the Bureau of Reclamation’s Division of Atmospheric Water Management, its cloud seeding arm, to find out just what was going wrong with the attempt to replicate the Colorado State University cloud seeding experiments.  The Washington group issued their report the following year (Hobbs et al. 1975).

One of the major conclusions in that report was that the ground released seeding material was not reaching the clouds on stably layered days or reached the clouds too close to the target to effect a snowfall on it.

The problem of deeply stabled layering during storms whose properties matched thos for an experimental day in the CRBPP had already been called out for the BOR in the seeding contractor’s report at the end of the very first season (Willis and Rangno 1971).

The presence of those deep stable layers was one of the issues that led me to believe that the increases in snow reported by CSU scientists from the published results of their experiments could not have happened.  Rather, it seemed more likely to me that a lucky draw of storms on seeded days must have produced the appearance of seeding-induced increases in snow in those benchmark experiments.

Irony

After joining Peter’s group, I was quickly sensitized to an appropriation of credit issue within his group that led to bitterness in some members.  One member pawed a sole authored Cascade experiment by Peter Hobbs, titled, “Natural Conditions”, and muttered, “all my work.”  Next, in reading another paper about the Cascade experiment, he erupted with, “That’s not what we found!”

Oh, me.

Here I was coming from the dark side of weather modification I experienced in Durango, to another form of the “dark side” of science.  How ironic this seemed at the time, from one frying pan and into another.

I was to overturn, usually with Peter Hobbs as a co-author, faulty claims of cloud seeding successes in Colorado and Israel, and the false hypotheses behind them in the published literature over the next 20 plus years.

Even today, yours truly has a manuscript on the history of the CRBPP cloud seeding experiment, co-authored with Dave Schultz, Chief Ed., Monthly Weather Review, currently in review at the J. Appl. Meteor.

More irony

Every experiment that I exposed as faulty, Peter Hobbs had previously passed positive judgment on the Climax experiments, the Wolf Creek Pass experiment, the Israeli experiments, and the Skagit Project.  Peter read journals, believed what they said, and took those findings prima facie, as most scientists would do.  I had left that motif behind in Durango; the cloud seeding literature just could not be trusted if a success was reported.

That last experiment in the list above, the Skagit, a non-randomized one, was one that Peter himself had interjected into the NAS-NRC 1973 review of cloud seeding because he thought it so legitimate a seeding success.   It certainly looked that way in the journal article about it by Hastay and Gladwell (1969).

In 1977 or so, we were going to propose a randomized cloud seeding experiment I had designed in the Cascades to the National Science Foundation using aircraft to seed a small watershed.  Since airborne seeding would be far more expensive than ground seeding, I figured I had better look into the ground seeding effort of the Skagit Project, that appeared to have produced such a tremendous success in a small region of the Skagit River watershed.

Result:  I overturned the Skagit Project that Peter thought so highly of in less than three days!

The reanalysis of the Skagit that I produced with its many river plots, however, was published as “Hobbs and Rangno (1978),” leading one faculty member within his to say to me that, “Peter stole that paper.”  This was the first appropriation of credit that I was to experience of several that followed.  Peter, of course, as a great editor, improved the organization and drafts I brought him, always.

But why would a leading scientist and faculty member at a prestigious atmospheric sciences department, like Peter Hobbs was, want to do this; take from his staff members and graduate students in his group and make it appear that he did things he didn’t do?  My reanalysis of the Wolf Creek Pass experiment had yet to be published although it had been accepted by the Journal of Applied Meteorology prior to the journal appearance of, “Hobbs and Rangno” Skagit reanalysis.  Since the Skagit reanalysis came first, I wondered whether it would it look like Peter had instructed me how to do the Wolf Creek Pass reanalysis?

The good in working with Peter Hobbs was that he supported my research, most of it unsettling the paradigms of the day, whether it was in the cloud seeding arena or in the formation of “secondary” ice, or reporting that an aircraft can produce ice in clouds at temperatures around -10°C, or in suggesting a previously unused tool (mm-wavelength radar) for the detection of cloud seeding effects.  Peter seemed to like it when his workers produced research that questioned the existing paradigms, and he was good at seeing that those controversial manuscripts got published.

The bad was that Peter took credit for the original work that I did during my first nine years in his group.  Here is clear example that occurred in a sole-authored paper Peter presented in 1980 at Clermont-Ferrand, titled, “Lessons to be learned from the recent reanalyses some cloud seeding experiments,” my reanalyses in fact.   From this paper is his Figure 2 with his appropriation of credit highlighted, similar to that concerning my Skagit Project reanalysis two years earlier:

I initiated and carried out the precipitation-per-day (PPD) climatology at the Colorado stations shown in Figure 2b and 2c most of that on my own time at home.  But here, Peter Hobbs takes credit for those datasets!   Why, oh, why couldn’t he be truthful about the origin of these “expanded data sets”?  Why wouldn’t he want to tell his audience, proudly, that a member of his staff did these studies, perhaps even mention his name?  Its incomprehensible to me.  I only discovered this appropriation recently.  As a forecaster with the CRBPP, I came to see “in person” how those PPD graphs by CSU scientists were not representative of the true PPD climatology.  And, of course, why wasn’t I at least a co-author of this pre-print?

Sure, its ONLY a pre-print that probably no one remembers but me, but still……

Returning to the CRBPP and my background before arriving in Peter’s group

The CRBPP was a sophisticated experiment that attempted to replicate the results of those earlier Colorado experiments Peter so highly regarded.  And I had information that cast doubt on the prior experiments that was not getting out to the science community (but should have).  Instead of questioning the original experiments, the scientific community was told that the CRBPP was operated incorrectly, and that was what caused the failed replication of the CSU successes (e.g, Elliott et al. 1978).

Before coming to Peter’s group, and after the CRBPP ended, I began working on a reanalysis of one of the Colorado experiments in the winter of 1975-76, the one at Wolf Creek Pass that led to the location of the CRBPP in southwest Colorado.   I lived off my savings in Durango to do so (hah, no skiing, either!)

I felt that I had the skill to reanalyze one or all the prior experiments on which the CRBPP was based with my background knowledge of weather patterns in the Southwest; from what I had learned about orographic precipitation from J. O. Rhea, the first Project Forecaster of this large experiment whom I worked under in my first season.   Rhea’s orographic model work eventually formed the basis of today’s PRISM graphics for average precipitation in the US and his work also formed the basis of flood forecasts by the California and Nevada River Forecast Center.

Because Peter Hobbs was malleable when new facts came in, he was able to move away from his position concerning those Colorado cloud seeding “successes” after I arrived in his group.  The change in Peter’s opinion was due to the drafts of the reanalysis of one of the so-called successes, that at Wolf Creek Pass, which also included an exposé of the faults in the hypotheses of the CSU scientists (Rangno 1979, Hobbs and Rangno 1979) that seemed to have explained why cloud seeding had increased snow in their experiments.

With Peter almost always as a co-author, I was to publish cloud investigations, and several reanalyses that eviscerated seemingly solid cloud seeding successes  them until the mid-1990s.  All these papers that concerned overturning cloud seeding “successes” were almost all unfunded, done on my own “time and dime,” not on university grant monies with the exception of the Skagit reanalysis.  Perhaps due to so much of my own private time that was sacrificed in these efforts, ones I deemed altruistic, I have a great sense of ownership about them.

Investigating the high concentrations of ice sometimes found in clouds with slightly supercooled tops (~-4°C > -10°C): going against the consensus

Peter also supported my “outlier” conclusions on another topic: the main cause of the development of “secondary” ice in clouds.  The explanation that has the most credibility even today is called Hallett-Mossop, “riming and splintering” process.   However, it did not appear to explain the rapidity of ice development in the slightly supercooled clouds that I sampled in the coastal waters of Washington State, though it surely played a significant role.

This mechanism was discovered in laboratory experiments by Hallett and Mossop 1974; Mossop and Hallet 1974, and confirmations of its effect in real clouds are innumerable, hence, “going against the grain.”  In fact, those findings were so outrageous and controversial that two of the best cloud scientists in the field, Prof. John Latham and Alan Blyth, the latter a friend, couldn’t take it any longer.  They posted a brief journal criticism concluding that me and Peter were wrong in those conclusions that downplayed the Hallett-Mossop riming splintering phenomenon as the major cause of the ice we saw.  The 1998 journal article by Latham and Blyth was titled, “The glaciation papers of Hobbs and Rangno.”  (I was so excited to see a journal title with my name in it I sent a copy of it to my mom! ) We (Hobbs and Rangno) did respond to the comments of Blyth and Latham in the same journal issue, defending our position.

I flew research flights as the Flight Scientist or Flight Meteorologist into hundreds, perhaps thousands, of shallow Cumulus clouds that formed lots of ice and wrote drafts of my findings that Peter enhanced.  Peter rarely flew on research flights until after 1990, especially the turbulent Cumulus flights, but rather worked on drafts of science papers by his staff and graduate students so that journal articles were churned out as efficiently as possible.  Peter acted as a sort of filter for all the many papers that were specialties of his group:  synoptics and rainbands, aerosols, and cloud microstructure.  Peter put his staff and students’ manuscripts in the best possible shape for journal acceptance.

Peter also did not allow papers to go out of his group without his purview.  But I did do that on several occasions when he was on sabbatical in 1983.  Doing that caused problems between us.  The motivation for me was that I felt it was a time I could have a real impact and could get away from the impression that Peter was directing my work.  I submitted no less than three manuscripts in 1983; on the clouds and cloud seeding in Israel, a reanalysis of the Climax experiments starting from raw data, and a “Comment” on the reporting of the Climax experiments.  All three were rejected or asked to be withdrawn (the “Comment” manuscript), but significant elements of them were published later under Peter’s purview (e.g., Rangno and Hobbs 1987, 1993, 1995a, 1995b).

My job sampling clouds to explore the development of ice in them was perfect for me.  I had been writing about visible ice in clouds, keeping diaries of clouds since I was a little kid and had learned about the importance of ice in rain formation from books my mom bought for me when I was growing up. Too,  I chased desert thunderstorms in the high desert of southern California, and even Hurricane Carla in 1961.

So, being in that research aircraft of Peter’s, a B-23 Dragon with a viewing dome on top of the fuselage, chasing small ice-forming Cumulus and Cumulonimbus clouds in the Washington coastal waters and elsewhere, was exactly right for me.  I loved my job, with one exception that was to be a growing problem over my first nine years.

Peter’s Science Training in Britain: How It May Have Caused His Problematic Authorship Determinations

Peter Hobbs trained at Imperial College in England under Sir B. J. Mason, a renowned cloud physics expert whose book, “The Physics of Clouds,” is standard reading for those interested in that topic like me2.  Peter had a methodology of authorship and appropriation of credit for the research done in his lab group that was said to have been one that was practiced in England, perhaps under Mason.  Peter often automatically took first authorship on papers that exited his group to journals.  That practice caused problems with the faculty, students, and staff periodically over the years.  And, eventually for me.  Some left his group in bitterness, and to this day, one faculty member doing a review of rainbands,  could not cite a Hobbs paper that he knew was mainly done by someone else.

Peter often took first authorship, too, on work that he did not personally analyze, though it was usually collected during field programs under National Science Foundation grant proposals that he and his faculty staff wrote and got funding for.  This was a factor in Peter taking first authorships.  Moreover, the data gathered that his students or faculty in his group used was obtained by the aircraft that Peter had gotten funding for through the NSF.

English astronomer, Anthony Hewish comes to mind and the story of the discovery of quasars for which Hewish got the Noble Prize, leaving without mention, the actual discoverer, Jocelyn Bell, who worked for Hewish and used his equipment in that discovery.  The “lab chief” problem of credit issues has also been long discussed as a problem in the US in books about science (e.g., Broad and Wade 1982, in their chapter, “Masters and Apprentices.”)

I eventually resigned in protest over the issue of credit after more than nine years in Peter’s group from a job, a university, and the people I worked with that I loved seeing every day I went to work.  It was a painful loss for me, but I felt I had to make a strong statement.  Ironically, we had reconciled over a paper via mediation by Department Chairman, Mike Wallace.

But then there was another credit issue just weeks after that which ended up being the final straw.   I resigned, submitting a 27-page letter describing all the issues that had troubled me, but had internalized over the years since I joined his group.

But, over a two-year period, Peter and I slowly reconciled.   I was hired back in December 1987 and worked with Peter for another 18 years!   Such reconciliations probably don’t happen too many times in real life, but I loved what I had done before, and jumped at the chance to return and fly into clouds once again when a graduate student suddenly quit Peter’s group.    Peter and I went on to publish several significant papers in ice formation (I think), and a comprehensive look at the cloud seeding experiments in Israel that drew a lot of journal attention.

Authorship sequence was never an issue again after I was rehired.   Sometimes we just alternated lead authorship for no particular reason even though I was the “grinder,” producing results from project research flights.  I wasn’t so concerned about credit anymore for those papers, at least outside the Cumulus cloud realm that was my specialty.

The last conflagration before being re-hired; it was a doozie

That last conflagration was in January 1987.  Peter tried to usurp my long held view on the clouds of Israel being incorrectly described in a letter to Prof. Abe Gagin, leader of the Israeli experiments.    In his letter to Prof. Gagin in, he indicated to him that he already knew what I was reporting in the accompanying manuscript that was sent.

This was blatantly untrue, as were several elements.  Here is his letter to Prof. Gagin on 12 January 1987.  It should be note that I am NOT an employee in his group, nor of the University of Washington at this time.   I was therefore livid about his statement concerning my communications  with S. C. Mossop, Roscoe R. Braham, Jr., Gabor Vali, and to Peter himself and Prof. Larry Radke during my time in Israel and afterwards.

In fact, a few days before I left for Israel on my cloud investigation in 1986, I met with Peter, and he accused me of being “arrogant” for thinking I knew “more about the clouds of Israel than those who studied them in their backyard.”

His statement was humorous and sad at the same time, but it also made me angry that Peter would lie to Prof. Gagin that he suspected what I found out about the clouds of Israel was what he already knew; that those clouds were not as Prof. Gagin had been describing them.

But again, why, oh, why would Peter want to do this to someone who has spent so much his own time and money in an altruistic effort to correct a faulty cloud assessments?  That 11-week trip to Israel cost me about $4,000 in 1986 dollars!

Once arriving home from Israel, I worked on producing a manuscript with figures I myself drafted the rest of 1986, living solely off my savings; in other words, a year of sacrificed income as well!  I was driven to expose those faulty cloud reports that was costing Israel so much in wasted cloud seeding efforts as I saw it.

Too, Peter had apparently forgotten about my manuscript on the clouds and cloud seeding in Israel that was submitted in 1983 while he was on sabbatical in England.  That short paper concluded the clouds of Israel were not as they were being described by the leader of cloud seeding program in Israel.  I had done my homework on his cloud reports in the literature independent of Peter, at home, on my own time.  But what I was reporting in 1983 was unconvincing and inconceivable to three of the four reviewers and it was rejected (Prof. Gagin himself was one of the “reject” reviewers he told me in 1984.)

In his January 12, 1987, letter to Prof. Gagin, Peter reminded him that he had raised questions with him at his 1980 presentation (in Clermont-Ferrand, France).  Peter does not mention that he had asked ME to write down some questions for Prof. Gagin before he went to that conference!  I had just begun reading critically about those experiments after the dust had settled on the Wolf Creek Pass reanalysis and a journal “Comment” paper.   At this time, Peter challenged me by saying, “if I really want to have an impact you should look into the Israeli experiments.”

So, I did.  He must have realized that I had an interest and skill in seeing through successful cloud seeding mirages.

Why is this chapter of going to Israel to expose faulty cloud reports so important to me, you may ask?

I considered my trip to Israel “historic” in the world of science.  Sounds crazy?  Here’s why.

I felt that what I was going to do when I went to Israel was analogous to what American physicist, R. W. Wood, had done concerning a new kind of radiation called, N-Rays that was being reported after the turn of the 20thcentury from a French scientist, Prosper Rene Blondlot.  Prof. Wood had gone to France, believing N-Rays to be a possible product of delusion and if so, expose it.  And that is what it was, N-Rays was product of delusion.

What Wood did is described in many books on science history, and was thus, “historic.”  This is because the N-Ray episode is considered by some as the greatest mass delusion in science history due to the number of published “confirmations” of a non-existent radiation.    I thought what I did in going to Israel paralleled Wood’s story.

The clouds described in support of cloud seeding successes in Israel, like “N-rays,” were, I believed, also non-existent.  And those, “fictitious” cloud reports from Prof. Gagin were accepted within the world of our best cloud seeding scientists!

And that’s what I felt I was doing in Rangno 1988, Quart. J. Roy. Meteor. Soc.) in my cloud exposé.   My findings that indicated that “ripe for seeding” clouds do not exist in Israel have been confirmed on many occasions since they were published.

Moreover, seeding to increase Israel’s water supplies ended in 2007 (2013?) after no increase in rainfall was found after 27 years of cloud seeding that targeted the watershed of their largest natural water supply, Lake Kinneret (Sea of Galilee).  A fourth long term, randomized experiment in Israel, Israel-4, ended after seven seasons with a null result in 2020.3  That spectacular null result after so much effort proved once again that the clouds of Israel contain too much natural ice for cloud seeding to be a viable method for increasing water supplies.

Thus, I couldn’t let Peter Hobbs’ claims go unchallenged.   After I reminded him about where his doubts came from about the clouds of Israel (me!), he replied formally to me in a letter that I was not to expect to work for him again.

I replied to his letter with my own long letter detailing what I had been telling him all along about the clouds and cloud seeding in Israel since the late 1970s!  His outgoing letter to Professor A. Gagin, the person responsible for describing fictitious, ripe for cloud seeding clouds, his letter to me in response to my reminding Peter where his information came from and that he had been clueless about the clouds of Israel before my trip, and my comprehensive letter to Peter reminding him of this.  These are displayed here for the purpose of documenting what happened.

Nevertheless, despite of Peter’s “won’t be hired again” letter in January 1987, I was hired back into his group in December 1987 when a grad student in his group working on ice in clouds suddenly left to take gainful employment.

We both realized that we made, for all our conflagrations, a good team.

===============FOOTNOTES====================

1I had volunteered to present this lecture with the subject being,   “The Rise and Fall of Cloud Seeding in Israel,” but was turned down.

2I bought the 1971 edition of B. J. Mason’s book while I was in Durango, CO and read it avidly.

3Journal results for this experiment, Israel-4, were published by Benjamini et al. 2023) .  The results of Israel-4 were reported to me in February 2021 from a media article in Hebrew prior to the appearance of Benjamini et al.  by Prof. Emeritus, Z. Levin, Tel Aviv University.

==============REFERENCES========================

Benjamini, Y, A. Givati, P. Khain, Y. Levi, D. Rosenfeld, U. Shamir, A. Siegel, A. Zipori, B. Ziv, and D. M. Steinberg, 2023:  The Israel 4 Cloud Seeding Experiment: Primary Results.   J. Appl. Meteor. Climate, 62, 317-327.  https://doi.org/10.1175/JAMC-D-22-0077.1

Blyth, A. M., and J. Latham, 1998: Comments on cumulus glaciation papers by P. V. Hobbs and A. L. Rangno, Q. J. R.  Meteorol. Soc., 124, 1007-1008.

Elliott, R. D., Shaffer, R. W., Court, A., and J. F. Hannaford: 1978. Randomized cloud seeding in the San Juan Mountains, Colorado. J. Clim. Appl. Meteor., 17, 1298-1318.

Hobbs, P. V., 1975:  The nature of winter clouds and precipitation in the Cascade mountains and their modification by artificial seeding.  Part I.  Natural conditions.  J. Appl. Meteor., 14, 783-804.

Hobbs, P. V., 1980:  Lessons to be learned from the reanalysis of several cloud seeding experiments.  Preprints, Intern. Cloud Physics Conf., Clermont-Ferrand, France, Amer. Meteor. Soc., Boston, MA, 02108, 88-91.

Hobbs, P. V., 2001:  Comments on “A Critical Assessment of Glaciogenic Seeding of Convective Clouds for Rainfall Enhancement.”  Bull. Amer. Meteor. Soc., 82, 2845-2846.

Hobbs, P. V.,  and A. L. Rangno, 1978: A reanalysis of the Skagit cloud seeding project.  J. Appl. Meteor., 17, 1661–1666.

Hobbs, P. V., and A. L. Rangno, 1979: Comments on the Climax randomized cloud seeding experiments J. Appl. Meteor., 18, 1233-1237.

Hobbs, P. V., L. F. Radke, J. R. Fleming, and D. G. Atkinson, 1975: Airborne ice nucleus and cloud microstructure measurements in naturally and artificially seeded situations over the San Juan mountains in Colorado.  Research Report X, Cloud Physics Group, Atmos. Sci. Dept., University of Washington, Seattle, 98195-1640.

Mason, B. J., 1971: The Physics of Clouds. Oxford University Press, 671pp.

National Academy of Sciences-National Research Council, Committee on Planned and Inadvertent Weather Modification, 1973:  Weather and Climate Modification: Progress and Problems, T. F. Malone, Ed., Government Printing Office, Washington, D. C., 258 pp.

Rangno, A. L., 1979: A reanalysis of the Wolf Creek Pass cloud seeding experiment. J. Appl. Meteor., 18, 579–605.

Rangno, A. L. 1986:  How good are our conceptual models of orographic cloud seeding? In Precipitation Enhancement–A Scientific Challenge, R. R. Braham, Jr., Ed., Meteor. Monographs, 43, No. 21, Amer. Meteor. Soc., 115-124.

Rangno, A. L., 1988:  Rain from clouds with tops warmer than -10° C in IsraelQuart. J. Roy. Meteor. Soc., 114, 495-513.

Rangno, A. L., 2000: Comments on “A review of cloud seeding experiments to enhance precipitation and some new prospects“. Bull. Amer. Meteor. Soc., 81, 583–585.

Rangno, A. L., and L. M. Hjermstad, 1975: views on the CRBPP, Durango Herald newspaper interviews.

Rangno, A. L., and P. V. Hobbs, 1980a:  Comments on “Randomized seeding in the San Juan Mountains of Colorado.” J. Appl. Meteor., 19, 346-350.

Rangno, A. L., and P. V. Hobbs, 1980b: Comments on “Generalized criteria for seeding winter orographic clouds.” J. Appl. Meteor., 19, 906-907.

Rangno, A. L., and P. V. Hobbs, 1981: Comments on “Reanalysis of ‘Generalized Criteria for Seeding Winter Orographic Clouds’”, J. Appl. Meteor., 20, 216.

Rangno, A. L., and P. V. Hobbs, 1987: A re-evaluation of the Climax cloud seeding experiments using NOAA published data. J. Climate Appl. Meteor., 26,757-762.

Rangno, A. L., and P. V. Hobbs, 1993: Further analyses of the Climax cloud-seeding experimentsJ. Appl. Meteor., 32, 1837-1847.

Rangno, A. L., and P. V. Hobbs, 1995a: A new look at the Israeli cloud seeding experiments. J. Appl. Meteor., 34, 1169-1193.

Rangno, A. L., and P. V. Hobbs, 1995b: Reply to Gabriel and Mielke. J. Appl. Meteor., 34, 1233-1238.

Rangno, A. L., and P. V. Hobbs, 1997a: Reply to Rosenfeld. J. Appl. Meteor., 36, 272-276.

Rangno, A. L., and P. V. Hobbs, 1997b: Comprehensive Reply to Rosenfeld. Cloud and Aerosol Research Group, Department of Atmospheric Sciences, University of Washington, 25 pp.

Rangno, A. L., and P. V. Hobbs, 1997c: Reply to Dennis and Orville. J. Appl. Meteor., 36, 279.

Rangno, A. L., and P. V. Hobbs, 1997d: Reply to Ben-Zvi. J. Appl. Meteor., 36, 257-259.

Rangno, A. L., and P. V. Hobbs, 1997e: Reply to Woodley. J. Appl. Meteor., 36, 253-254.

Rangno, A. L., and S. Suloway, 1974:  Pre-empting God, Deep Creek Review article on cloud seeding.

Sax, R. I., S. A. Changnon, L. O. Grant, W. F. Hitchfield, P. V. Hobbs, A. M. Kahan, and J. S. Simpson, 1975: Weather modification: where are we now and where are we going?  An editorial overview.  J. Appl. Meteor., 14, 652–672.

Willis, P. T, and A. L. Rangno, 1971: Colorado River Basin Pilot Project, Comprehensive Atmospheric Data Report, Phase II, Winter Season of 1970-71, Vol. I, Report to the Bureau of Reclamation, 71 pp.

Life Stories: PETER HOBBS (!) and me (rangno)

PETER HOBBS and me.”

A well-known friend and well-published faculty member from Colorado State University, after I told him I was going write a blog about my almost 30 year professional relationship with Prof.  Peter V. Hobbs, suggested that my title should look like the one above.  After all, Peter Hobbs wrote several books in the atmospheric sciences and had co-authored hundreds of journal articles that came out of his group, thus had massive impact in his field.  Hobbs was honored by the American Meteorological Society with a symposium day in New Orleans in 2008 dedicated to his memory.  I gave a talk there on our publications in weather modification/cloud seeding.

My friend’s suggestion made sense because I only authored a tiny fraction of what Prof. Hobbs did.  Still, I had a measurable impact, one might say, because of the opportunity that being in Peter Hobbs’ group presented, and critically, his support for my “contrary” findings.  I was part of his research group from 1976-2006, except for a two year hiatus (1986 and 1987) whose cause is eventually explained.

We received a monetary prize for our work in 2005.

Why write about my professional relationship under Peter V. Hobbs?

  •  I strongly want to get credit for the views and independent research I carried out when arriving in his group in 1976 from a Colorado cloud seeding experiment. From the published early record, it is not clear due to authorship sequences what my role might have been.  What I brought in to Peter Hobbs was to be the kind of unfunded, volunteer research I continued to carry out over the next two decades on my own time concerning cloud seeding claims that I deemed dubious.  I was bringing an expertise  that wasn’t there in the Department of Atmos. Sci. at the University of Washington due to  experiences I had with the Colorado River Basin Pilot Project in SW Colorado.
  • Don’t all science workers want to get credit for the work and ideas they came up with, even if some are but crumbs off the table?  I think so, and I certainly do, and that explains what all this is about while trying not to look like a little, itty-bitty tiny crybaby.  It’s especially true as I enter true “fogeyhood” and the end of life may be just over the horizon.
  • Some thoughts on authorships in science were expressed almost four decades ago by William J. Broad, Nicholas Wade of the NYT, and science reporter, Daniel Greenberg, in this piece on fraud in science during NPR’s Dateline with Sanford Unger.  This 18 min piece speaks to the very same issues we have today, another reason for posting it:

  •  After I quit in 1985 due to credit issues with Peter Hobbs1,  I was  rehired by him two years later, a quite amazing thing when you think about it.   It says a lot about Peter, too.   Authorship sequences/credit issues were no longer a problem; it was “conflict followed by reconciliation.” We even traded lead authorship sequences for no particular reason being nice to each other.  It doesn’t get better than this because I was returning to a job,  people,  and university I loved (go Dawgs!)
  • My work had a an impact in tearing down or degrading five majority science views which is probably more impact than even most faculty members have at universities.   With only a B. A. in meteorology, i.e., being a quite under-credentialed worker,  makes my story “highly improbable”–I’m smiling as I write this. But, as a weather “monomaniac,” storm chaser, weather map and data hoarder, and cloud photographing fanatic,  eyes always skyward,  I was bringing a different kind of background into Peter Hobbs’ aircraft and research group.
  • When research findings that are potentially embarrassing “come up from below,” and particularly when they could be seen as
    “low hanging fruit” ready to be picked by almost anyone, it may not be welcomed by high-ranking scientists who could’ve easily done it.  Douglas Adams understood this “credential syndrome” so well in his Hitchhiker’s Guide to the Galaxy sci-fi parody when he wrote this:

It startled him ( a graduate student) even more when just after he was awarded the Galactic Institute’s Prize for Extreme Cleverness he got lynched by a rampaging mob of respectable physicists who had finally realized that the one thing they really couldn’t stand was a smart-ass.”

  • My work concerning “majority views” in the weather modification/cloud seeding arena was almost entirely unfunded.  I spent thousands of hours of at home unraveling false cloud seeding or false cloud descriptions in support of cloud seeding projects.  This effort  was driven by a feeling that I had a responsibility and the knowledge to do it, but also too,  because I saw that those who could also do it, wouldn’t.  I was truly “driven” to do something about a deplorable situation in the weather modification/cloud seeding field as I saw it!
  • This is not an unusual story.  You have everything to lose by criticizing or reanalyzing the faulty, published work of others;  silence is a preferred pathway; “truth” (negative findings) remains hidden. Science’s Chief Editor, Donald Kennedy addressed this in the big Pharma arena:

  • The publication of bogus literature is due to poor peer-reviews of manuscripts in the first place.   Here’s where one starts embarrassing not only the authors when you correct their work, but also the reviewers of faulty literature.  Inadequate peer-reviews, perhaps by partisans,  were responsible for the false claims I corrected in the peer-reviewed literature, ones that cost funders of cloud seeding operations, as in Colorado and Israel, based on faulty research  so much.   Namely, it didn’t have to happen.
  • The role of Peter Hobbs:  My work was published in peer-reviewed journals mostly because of being in his research group and due to his support.   He was malleable when new facts came in and could jettison prior views,  such as those he held prior to reading my draft reanalyses of cloud seeding experiments.
  • Too,  Prof. Peter Hobbs’ giant reputation provided a critical mass for editors and reviewers to accept work he signed onto.   In sum, Peter Hobbs was willing to stick his neck out and support my independent research.  Thank you, Peter Hobbs.
  • For these  works in weather modification/cloud seeding,  Peter Hobbs and I received a monetary prize adjudicated by the World Meteorological Organization in 2005.  Hobbs could very well have added other names besides mine from his group in his application for this prize, but he didn’t.

I was not a great, productive researcher at the UW, but rather a mediocre one.  I feel guilty even today about  data collected by our aircraft that I never got finished evaluating and did not publish anything  about.   Part of the reason, to make an excuse,  was that when our aircraft “unterfuhrer,” Prof. Larry Radke,  left for NCAR, Peter Hobbs began to fly on all our field projects instead of remaining back at the UW churning out papers.  He had never done that before.  He needed a “cloud guy” on those flights.  So, off I went on almost every field project beginning in 1990 instead of remaining in SEA working on my own area of research that even in the best of times progressed slowly.

==================================================What were the so-called “majority views” that were downgraded or eliminated ?

1) An aircraft cannot produce ice crystals in clouds when it flies through them at temperatures near -10°C .   This possibility was completely ignored or denied by researchers doing airborne sampling of clouds for decades.  It was thought that temperatures had to be far lower (~<-30°C) for this to happen  before Rangno and Hobbs (1983) came out.  It took eight years for the first confirmation of this effect to come out (Woodley et al.  1991).

2) The Climax and Wolf Creek Pass randomized experiments had “proved” cloud seeding (NRC-NAS 1973, among numerous citations) and these experiments had a strong, but false,  cloud microstructure foundation that accounted for the statistical results. Gone due to Rangno (1979), Hobbs and Rangno1 (1979), Rangno and Hobbs (1987, 1993, 1995a).  The high opinions  regarding these experiments were already in free fall by the late 1970s due to the experimenters revelations themselves, partly due to news they received that an outsider (guess who?)  was going to evaluate their work.

3) Israeli clouds do not rain until low cloud top temperatures are reached and do not exhibit ice multiplication (Silverman 1986, Amer. Meteor. Soc. Monograph, among numerous citations).  Those ersatz claims  buttressed the statistical results of Israel’s cloud seeding.  Status:  Gone:  Rangno (19882), Rangno and Hobbs (1988), Levin 1992, 1994, Levin et al. 1996, Freud et al. 2015) and others.

4) The first two Israeli cloud seeding experiments “proved” cloud seeding (Kerr 1982, Science, among numerous citations). Gone, except in the minds of some Israeli cloud seeding promoters who cannot acknowledge error or the true precipitating nature of their clouds.  Rangno and Hobbs (1995, 1997a, b, c, d, e), Levin et al. (2010).

5) The Hallett-Mossop riming-splintering process produces nearly all of the 2ndary ice in clouds with tops never colder than about -12°C. (numerous citations).    There is still some doubt regarding how much this consensus view has been downgraded in recent research.  Not “gone,” but diminished due to findings that drop shattering also contributes to 2ndary ice in a measurable way but is still not quantitatively known.  Hobbs and Rangno (1985, 1990), Rangno and Hobbs 1991, 1994), Rangno (2008), Lawson et al. 20xx) have all published observations indicating the role of riming-splintering may not be the total driver of 2ndary ice formation.  Blyth and Latham (1998), however, have questioned the “outlier” conclusions by myself with Hobbs.  We responded royally.

==================================================

OVERVIEW

When you read what I have to say about the sometimes troubled relationship with Peter Hobbs, you will wonder one thing: “Would I do it again, that is, go through the joy of discovery in cloud-ice research, the overturning of peer-reviewed published, but suspect, cloud seeding literature,  amid the frustrations of working with Prof. Peter V. Hobbs that you will read about?”

The answer is an emphatic, “yes.”

I wrote this about about Peter Hobbs in 2018:

Acknowledgements:  This review is dedicated to the memory of Peter V. Hobbs, Director of the Cloud and Aerosol Research Group, Atmospheric Sciences Department, University of Washington, Seattle.  He allowed me to become the most I could be in my field. 

—-In Rangno (2018), “Review and Enhancement of Chapter 7, AMS Monograph 58 on Secondary Ice” by Field et al. (2017), accepted pending revisions.  (I did not carry out the revisions feeling that they eviscerated much of what I wanted to say.)

In January 1987, the last paragraph of my 3-page letter to Prof. Hobbs correcting some of his statements :

So as not to be entirely contentious in a sensitive area, I do also want to thank you though for your help in backing me up over the years on a number of controversial issues.  Lesser persons would have shrunk from them, I am sure.  For this support, and facilitation of truth in our science I shall always be deeply indebted to you.”

This memoir, too, if I may be so presumptuous to write one, is also dedicated to Professor Peter V. Hobbs, Director of the Cloud and Aerosol Research Group at the University of Washington.

The Cloud and Aerosol Research Group may have been the most visible part of the University of Washington’s Atmospheric Science Department due to having a research aircraft and the large, almost continuous flow of journal papers that emanated from his group following field campaigns.  Groupings of published papers in numbered yellow binders were sent out across the world by Peter Hobbs.  Three hundred of each volume were sent out!

The Group’s findings were almost always at the leading edge of science due to having airborne measurements collected with the latest instrumentation, bringing new information concerning clouds, structure of rainbands, precipitation formation, and aerosols.  It was due to Professor Hobbs management of his research faculty, staff, and graduate students that so much was published in a timely manner.

In my own sphere, cloud microstructure and reanalyses of published cloud seeding experiments, Peter Hobbs supported me in all my research findings, several of which went against consensus science at the time.

When personal tragedies struck, Peter Hobbs was the first to let you know you had his support; that you could take time off as needed for them.  For example, Peter understood when I had to leave work suddenly one afternoon after receiving news that my dad had collapsed and died.  And again, when I needed to leave just as suddenly when my son was having a crisis in Germany.   There was no time limit concerning this kind of absence.  Peter understood and sympathized with these kinds of events because family to him was so important.

Peter Hobbs was always also a happy participant in the Cloud and Aerosol Research Group’s annual Halloween Party at which he happily dawned a costume.

And no one, worked harder than he did, staying focused at his large desk in the corner of the 5th floor of the Atmospheric Sciences Geophysics Building.  When passing his office, which I did several times a day, his head was always down concentrating on the research draft at hand.

But Peter was an enigma in his professional life at the University of Washington, too.

There were sporadic periods of tension and controversy between Peter Hobbs and his staff, graduate students, or faculty within his group, all to my knowledge over authorship issues.   Two faculty members exited his group in bitterness and anger during my time in his group.  I, too, had problems with Peter Hobbs.

Since I am describing problems from my own viewpoint, I have also surveyed some former members of our group, and those who knew him in his field external to his group to chip in with their own opinions, so I don’t produce a slanted account.

The range of opinions I encountered about Peter Hobbs was extreme, even among faculty and scientists at other institutions.  For example, two funding officers who represented NASA and the NSF and who passed large sums of money to Peter Hobbs and his group  told me that they liked Peter; one socialized with him.   And it was true that they got significant returns for their funding in the form of publishable science from CARG’s field programs.

However, two leading external faculty in Peter’s field, both using the exact same wording, asked me, “How could you work for that man?” Another faculty member who exited Peter Hobbs’ group due to what he felt were credit abuses, described Peter in the worst terms, “a total fraud.”  There were other exits in anger, and one major former faculty member in his group who had exited in the mid-1970s recently could not cite a rainband paper authored by Peter Hobbs in his 2022 review.

On the other hand, one long-term member of his group never complained about the appropriation of his work by Peter Hobbs.  There were sole authored papers whose published contents were mostly carried out by this member, an outstanding researcher.   He told me he didn’t really care about getting name credit for his work because having a job and supporting his family was more important to him than fussing over issues of credit that might jeopardize that stability.   This member of his group was responsible for many of the synoptic and ice crystal studies that came out of Hobbs’ group.  He described Peter as “decent person” and socialized with him and wife on many occasions.

And, as far as I could tell, Peter Hobbs was, indeed, a good family man and was good at working the crowd at celebrations or other social gatherings that I was at.

The best outweighed the worst.

Proof of Peter Hobbs’  importance to getting published  

Only one paper I wrote myself, of all the half-dozen or so I submitted to journals on my own, was accepted for publication (Rangno 2008, J. Atmos. Sci.)  It’s true that those that were rejected were controversial and had less chance than the “average” manuscript of being accepted in a polarized field since they were about faults in the cloud seeding literature.  Still…..

============Footnote========================

1The authorship contribution issue has been addressed recently by such high end journals as Geophysical Research Letters which now has the following criteria for authors.  Below is an example.  Had these  criteria been in place when during my first ten years in Peter’s group, there would not have been any authorship conflicts!

Author Contributions as listed in recent Geophysical Research Letters publications:

Conceptualization: Subhrendu Gangopadhyay, Connie A. Woodhouse, Gregory J. McCabe, Cody C. Routson, David M. Meko

Data curation: Subhrendu Gangopadhyay

Formal analysis: Subhrendu Gangopadhyay, Connie A. Woodhouse, Gregory J. McCabe, Cody C. Routson, David M. Meko

Investigation: Subhrendu Gangopadhyay, Connie A. Woodhouse, Gregory J. McCabe, Cody C. Routson, David
M. Meko

Methodology: Subhrendu Gangopadhyay, Connie A. Woodhouse, Cody C. Routson, David M. Meko”

PS:  I would strongly recommend adding  the following to this list:

             Editorial and organizational guidance/expertise, if any: __________________________

2Resulted from self-funded 11 week cloud investigation in Israel in 1986.

Updated Catalina, AZ, Water Year Plot, 1977-78 through 2022-23; summer temperature maximums in AZ not increasing (?)

Since the chance of measurable rain before the end of September 2023 is nil and none, I thought I would post an updated plot of the Catalina Water Year precipitation totals since records began at Our Garden from the 1977-78 Water Year, October 1 through September 30:

With an El Niño in the wings, it may be that the current recovery from the droughty years from 2000-2010 will be enhanced.  Ninos are supposed to bring wetter conditions the the Southwest. In case you think I am lying about a Niño in the wings, here is a chart of sea surface temperature anomalies I just grabbed from here:

While we’re in the subject of weather, I am going to add these plots from the NOAA publication, “Climatological Data, Arizona.”  In EVERY one of these monthly publications is a table of the highest temperature observed ANYWHERE in the state since the summer of 1898.  I wanted to see how much they’ve been increasing in June and July over the 125 years since these publications started coming out.  After all, we’ve been hearing a LOT about “extremes” increasing.  I don’t why I even bothered to do this, what a waste I am sure it will be; the extremes will be shooting upward!

But, anyway, here are those plots with trend lines:

Not much going on, especially of late.  July has an overall upward trend since records began, but that last 50 years or so don’t seem to be following that upward trend.  And how can June exhibit a slight downward trend?  Not what I expected.   I dunno why.  I will leave it to the “extremists” to explain.

Thanks for reading, if anyone does.

Art, retiree, Cloud and Aerosol Research Group, University of Washington

The Trials and Travesties of a Seattle Mariners Batting Practice Pitcher, 1981-1983

When Seattle Mariners’ pitching coach, Frank Funk, called me in from the bullpen that Sunday in July 1981, I was pretty nervous.  I had never before pitched to major league batters.  Tommy Davis, the former Dodger outfielder, had been nice enough to warm me up in the bullpen instead of one of the Mariners catchers.  I strolled onto the mound, heart pounding.  I had played at this University of Washington Husky campus venue, Graves Field, where the Husky baseball team played, many times as a member of Seattle’s“ Paintings Unlimited”  semipro summer team in the Western International League.   Still, the whole scenario of the Graves Field filled with major league players just after the 1981 baseball strike had ended, was surreal.

Since I didn’t follow major league baseball at all, I had no idea who the first batter I was to pitch to was, his gray hair protruding from his Seattle Mariners’ cap.  I thought he might be a coach just to check me out before the actual players stepped in.    I began throwing in as machine-like mode as I could, one ball after another; no dawdling is permitted.  And I had velocity; the ball did not arch but zipped in.  I estimate that it was in the mid-60s to maybe 70 mph.   It was exactly as I threw BP to my semi-pro team before our games.

Somehow, I got into a rhythm in spite of my nervousness, and it was one strike after another.  And I was giving up a lot of solid line drives and bombs.  After that old guy with the gray hair sticking out from under his cap finished, then came Lenny Randle, Gary Gray, Julio Cruz, Bruce Bochte, and a couple of others.   Gray, who was having a great start until the major league baseball strike, hit quite a few out.  That whole 1981 Mariners roster is here.

Later, I found out who that gray-haired batter was; it turned out to be Tom Paciorek, the player who was leading the American League in hitting when I threw to him!  Honestly, I had no idea who he was.

After my BP stint at Husky Ballpark that day I got a lot of positive statements from the players, “sweet BP”, high fives, and such.  I was told by Coach Funk that they would call me down to the Kingdome when the games resumed.  Of course, I could never be sure that it would really happen; maybe they were just being nice.

But, in any event, whether they did or not, I had a witness that day.  My good friend and grad student in our Cloud and Aerosol Research Group, Steve Rutledge with whom I played catch with regularly at the University of Washington, was there at Husky ballpark that Saturday afternoon, and saw the whole “drama” unfold.   

The next day, to my surprise, there was a tiny mention of “my work” in the Seattle Times.  And, to top it off, Dave Parsons, another graduate student in our group had seen that little Seattle Times note and pasted it on my desk at the U-Dub, along with a little sign that read that there would be a “$1 charge for touring the desk of Art ‘Golden Arm’ Rangno.”  It was pretty funny.  An awful lot of guys can throw BP, but to my co-workers and grad students in the department, it was something special.

A few days later the 1981 baseball season resumed its abbreviated schedule, and while I was at work, I “got the call” to join the major league team—as a batting practice pitcher!

It was pretty exciting since my desire for throwing BP was really just to see how different a major league team was in hitting a baseball compared to my own Seattle Paintings Unlimited team for whom I pitched BP to regularly.  I liked to throw BP with velocity, and my team loved it.

“Regularly” meant throwing a LOT of BP, too!  In the Western International League (WIL) that we played in, there were four-nine-inning games a week beginning in June and continuing through mid-August.  The WIL was a league comprised of a sprinkling of ex-pros and summer college teams, like the Washington Huskies (sans seniors).  One stalwart to play briefly in that summer league decades later (later renamed, the Pacific International League) was former Giant star, Tim Lincecum.

That Paintings Unlimited team had a regular supply of pro baseball signees: eight were signed from that one team during my 5-year tenure on it, including several that made the major leagues, if only for “a cup of coffee.”  One was Mike Kinnunen, a Washington State pitching star, who, the very next year after his 1979 season with Paintings, was pitching for the Minnesota Twins and against the likes of Don Mattingly! In 1980, I was batting cleanup, and the hitter before me, Jay Erdahl, was to make the last out at the College World Series in Omaha that year as his “Cinderella team,” the Hawai’i Rainbow Warriors, lost to the Arizona Wildcats.

It was a heady time playing on that Seattle north end team.

https://cloud-maven.com/wp-content/uploads/2021/06/Northend-Semi-Pro-team-026.pdf

But by 1981, at 39 years of age, and competing against area college players, I wasn’t playing anymore.  For all the years that I played beginning in 1977, I had been the oldest starting player in the league and was always vulnerable.  Not playing anymore in 1981, riding the bench, warming up pitchers, meant I was hungry to do something more with a baseball.  And it was that summer that I read that the Mariners, following the end of the baseball strike of 1981, would begin working out at the University of Washington where I worked.  And I took a chance and went out for a tryout as a BP pitcher.

——————————————————————————–

The Mariners were pretty bad during my stint as a BP pitcher, 1981-1983 under poor manager, Rene Lachemann.  Lachemann was fired during the 1983 season, and before he was fired, as you can imagine, he was under intense media scrutiny and pummeled with advice.

Lachemann ran around the perimeter of the outfield before the Mariners games, and being out there myself during BP, I yelled to him just before he was let go:

 “Hey, Rene….about the team….” At this point he turned toward me, one of his BP pitchers, with the darkest scowl you can imagine.    I continued, with a smile: “I don’t have any advice about the team.”  Lachemann broke up in laughter,  and that moment still comprises one of my fondest memories.

Another memorable moment was pitching to just two batters, Paciorek and Bochte for my whole 20-25-minute stint.  The reason?  They thought my delivery resembled that of Jim Palmer and the Mariners were playing the Baltimore Orioles that night with Palmer pitching.  Paciorek and Bochte together got five hits that night!

Then, in 1984, I was “released” by Del Crandall, the new Mariners manager.  Instead of having local amateurs come in and pitch, the team would now use its coaches almost exclusively for BP, with I think, one exception, Jerry Fitzgerald, a fellow “volunteer” BP pitcher who was a lefty.  Lefties are always in demand!

But there was another factor that led to my “release” in 1984, one that came out of the blue, a factor that was hard for me to believe.

In one 1983 BP session later in the season at the Kingdome, Steve Gordon, the Mariners bullpen catcher in those days, caught me.  Usually you just threw at the netting behind home plate.   At one point while I was throwing, Steve raised his right arm in a throwing motion and waved it at me several times, using an overhand motion.   Since I was throwing one strike after another with “velocity,” I thought he was signaling to me about how great I was throwing.

Nope.

When my session was over, Steve came over to me and said, “The guys are getting pissed because you’re cutting the ball.”

“Cutting” the ball in baseball meant that you are throwing a ball that had movement; it was not going on a straight line which makes it eminently hittable.

I was flabbergasted, and felt truly bad, since as an amateur pitcher from time to time, I never was accused of throwing a ball with movement, a downfall for anyone that wants to pitch.  It was so ironic that I was now being told that my ball had “movement!”

I also began to realize that I wasn’t giving up many home runs while throwing BP.  The fun part for the players is to just blast the ball as friggin’ far or as hard as they could; it made them feel good, get confidence, and that wasn’t happening.  Richie Zisk, the Mariners slugger of the day, once told me I had “the best sinker in the league”, but he was SURELY joking, maybe even being sarcastic I thought.  I forgot about it.

I began to think about some other not-so-great things that had happened in 1983.  One HUGELY embarrassing thing for a BP pitcher had happened during my session pitching to the struggling Al Cowens; he swung and missed a batting practice pitch!  My face turned red and I kind of apologized, muttering a “sorry” to him.  Then, he broke his bat on another pitch.  I felt horrible!  But I didn’t think I had anything to do with it; he was in mental funk about hitting that season and nothing could be hit properly.

Another dismal chapter (travesty?) in 1983 involved Gaylord Perry, a good hitting Hall of Fame pitcher.  He stepped into the batter’s box during BP wanting to crush a few just for fun—pitchers don’t bat in the American League.  After a few swings and misses, and foul balls, he quit in disgust yelling at me, “That’s terrible!”  I never forgot his comment.

I only wish I had been fast enough to add, “Hey, I was just putting goop on the ball like you did all those years to see how you liked it, you washed up buffoon.”

Perry was a well-known spitball pitcher who amassed many of his 300 wins in a dishonest way, but one in which baseball generally looked the other way.  In a 1982 weather forecast I made for KZAM-FM, I alluded to the Perry “methodology.”  My housemate, Yuko, recorded it, something that may be a candidate for the media weather forecasting “Hall of Shame.”  it’s a little muffled.  The DJ, Dave Scott, chats for about 25 s before I come on with my forecasting travesty “honoring” Gaylord:

https://cloud-maven.com/wp-content/uploads/2021/07/moisture-and-rotation.mp3

In my defense of this so-called,  “schtick” presentation of weather, let us remember that in 1981, the weather forecast methodology was described by the LA Times as consisting of “Clowns and Computers.”  I did my best to fit in!

Later, and in trying to be analytical about “movement” on the ball, I thought that maybe my sweaty hand—I was always nervous stepping out on the Kingdome mound, had maybe caused that movement that I did not mean to have.

And you were always throwing almost brand-new baseballs from the basket of balls next to you that held about 40 of them.  Those new balls had no roughness, so you had to be careful throwing them, making sure you had a good grip.  Maybe I was gripping them too tightly?

I did not move up from the pitching rubber like the other BP pitchers did.  I threw from the mound like a regular pitcher (and behind the protective screen), as I did for my semipro team.  I never changed that style.  I was not throwing anywhere  near the speed of major league fastball, of course.   But maybe that extra distance gave the ball more time to move.  I never discovered what caused the movement.

Other things that happened….

Three non-strikes in a row happened a couple of times, and the quiet, that lack of a ball being struck virtually every second, is really unsettling.  The whole Kingdome seemed to go silent at such moments.  They were rare, but they did happen.

If that wasn’t bad enough, during a 1983 BP session, I hit a Mariners batter in the knee, starting centerfielder, Joe Simpson.  There was an audible “oohhh” from the tiny early arriving Kingdome crowd.

On another major slip, I made Dave Henderson come out of his helmet when a pitch I threw got away high and inside causing him to drop to the ground.

You know, I am sounding more and more like a really bad BP pitcher!

If your wondering, only one batter on one occasion asked to practice hitting against curve balls in BP, John Moses, a Mariners center fielder.

An important fact:  in 1983 the Seattle Mariners had the 2nd lowest MLB  team batting average at 0.240.  No doubt this contributed to what happened next.

So, when I showed up in the locker room for the start of the next season in 1984 with the “guys”, I was given the word that my services were no longer needed.  I left the locker room kind of embarrassed, passing the security guard I had just said “hello” to, hopped on my bicycle, and rode home.  Yep, I peddled every time to the Kingdome from the U of Washington, and then home to north Seattle’s Greenwood neighborhood, probably a good 10 miles total, and with slopes and in traffic.  It was a great warmup coming in.

I remember, too, in those simpler days, how easy it was to get in the locker room of the Seattle Mariners with my little bag of equipment, by just saying to the security folks, “BP”.  Of course, after a couple of times they recognized you and in you went to join the “guys.”

It was fun to do that BP, too, because unlike the other BP pitchers, and before I pitched my 20 minutes or so, I ran around in the Kingdome outfield like a mad man chasing those balls hit in batting practice—I played outfield in my early amateur career and this was outfield practice.

A couple of times, too, when a player found out I was a meteorologist at the University of Washington, we would stand around in the outfield during BP and talk weather.  I remember a long conversation with Richie Zisk out there about El Ninos, a giant, headline-grabbing one having happened that 1982-83 winter.  He really asked a LOT of questions.

If you were here in Catalina, AZ, in 1982-83, you would remember that giant El Nino year.  In that water year (Oct-Sept) we received over 29 inches of rain, and 33 inches if you count the first few days of October 1983 when the worst weather disaster in Tucson history struck due to several days of heavy rains on already saturated soil at the beginning of October.

Back to baseball…

It may seem odd, but I could hardly stand watching a major league game even in the stands right behind home plate.  As a player, playing with top amateur talent, the last thing you wanted to do was sit on your butt and watch other guys play!  You wanted to be playing against the BEST yourself.

So, while my Mariners BP “pay” was to sign in for four free tickets amid the players’ wives behind home plate, I only went to one game for a few innings during those three seasons I pitched BP.  I usually gave my tickets away by signing in the names of folks from the U of WA Atmospheric Sciences Department where I worked on the guest ticket list before I left.

While I many of those great seats were used by folks in our Department, the Mariners were so bad in those days (1981-1983), that on MANY occasions I could not GIVE away the best seats at a MLB game, the ones right behind home plate!

After a while, I didn’t make much of an effort since it was kind of embarrassing to be turned down two or three times by my co-workers and grad students.  Almost as bad as being turned down two or three times for a date by the same girl.

The Mariners played music on the Kingdome sound system during BP.  One particular piece, a Beatles disco-style medley by “Stars on Long Play” that sounded exactly like the Beatles, was played repeatedly during the time I pitched:

https://youtu.be/RrAJRoCv3dQ

To this day, hearing this, if I do, puts me back in the Kingdome on the mound with a basket of baseballs next to me.

I realized I could have pitched BP for many years if I had pitched the way the other BP pitchers did; closer to home plate, off the mound, lobbing the ball at fairly low speeds.  I was arrogant to think that the way I liked BP to be thrown to myself, balls with some zip, was the way to do it for MLB batters.  It seemed OK at the start until the ball started to “move.”

Well, that’s all I can remember right now, but it’s already too much.

CHAPTER 5: GOT PUBLISHED! (I.E., “RAIN FROM CLOUDS WITH TOPS WARMER THAN -10°C IN ISRAEL”)

I was so excited…

 My trip, and the analysis of the data that came out of it,  was the first published report that something was not right with Prof. Gagin’s cloud reports.  My publication appeared in the Quart. J. Roy. Meteor. Soc., Rangno 1988, “Rain from Clouds with Tops Warmer than -10°C in Israel,” hereafter, “R88,” found here).  My manuscript was “communicated” to the Quart. J. Roy. Meteor. Soc. by the director of our airborne research group,  Prof. Peter V. Hobbs, a member of the Royal Society eligible to submit papers to that journal.  (I was not).

Neither Prof. Hobbs nor I believed that my paper refuting the many published descriptions of Israeli clouds by Prof. Gagin could be published in an American Meteorological Society journal.  Too many potential reviewers had heard Prof. Gagin’s presentations on too many occasions, or read his journal papers,  to believe that what he was saying could be so much in error.

R88 was based on rawinsonde-indicated cloud tops when it was raining at the launch site or within an hour and a half, so it was fairly primitive.  Why I had only rawinsonde data and not data from Prof. Gagin’s 5-cm modern radar data as was explained in Chapter 4.

Nevertheless, my “primitive” findings were confirmed several years later in independent airborne studies (e.g., Levin 1992, 1994, preprints; Levin et al. 1996, J. Appl. Meteor.) and on several occasions since then (e.g., Freud et al. 2015).  Spiking football now!

Why Prof. Gagin’s cloud reports were likely in error and how much they deviated from comparable clouds was shown in Rangno and Hobbs 1988, Atmos. Res.

I had experienced cloud seeding “delusionaries” in Colorado during the CRBPP, namely, credentialed “scientists” who believed things that weren’t true and even published things they knew weren’t true (as Grant and Elliott had done in 1974, J. Appl. Meteor.).  I sensed that Prof. Gagin might be one of those.  He and his staff also had a lot to lose if the clouds of Israel weren’t so ripe for seeding as his descriptions painted them.

I reprised my 1988 published findings from my trip to Israel in a University of Washington Atmos. Sci. colloquium in February 1990. I was motivated by the J. Appl. Meteor. memorial issue to Prof. Gagin in October 1989.  Here’s the flyer for that talk, intended to draw interest with some topical humor concerning the Iran-Contra affair that was in progress while I was in Israel in 1986 (unknown to me at the time):

End of life story.  I consider this episode concerning Israeli clouds my greatest, costliest, volunteer science contribution of the several reanalyses that I did on my own time and dime.

Sincerely,

Art